ESTDepth: Multi-view Depth Estimation using Epipolar Spatio-Temporal Networks (CVPR 2021)

Overview

ESTDepth: Multi-view Depth Estimation using Epipolar Spatio-Temporal Networks (CVPR 2021)

Project Page | Video | Paper | Data

We present a novel method for multi-view depth estimation from a single video, which is a critical task in various applications, such as perception, reconstruction and robot navigation. Although previous learning-based methods have demonstrated compelling results, most works estimate depth maps of individual video frames independently, without taking into consideration the strong geometric and temporal coherence among the frames. Moreover, current state-of-the-art (SOTA) models mostly adopt a fully 3D convolution network for cost regularization and therefore require high computational cost, thus limiting their deployment in real-world applications. Our method achieves temporally coherent depth estimation results by using a novel Epipolar Spatio-Temporal (EST) transformer to explicitly associate geometric and temporal correlation with multiple estimated depth maps. Furthermore, to reduce the computational cost, inspired by recent Mixture-of-Experts models, we design a compact hybrid network consisting of a 2D context-aware network and a 3D matching network which learn 2D context information and 3D disparity cues separately.

Here is the official repo for the paper:

Table of contents



Requirements and Installation

This code is implemented in PyTorch.

The code has been tested on the following system:

To install, first clone this repo and install all dependencies:

conda env create -f environment.yml

Option: install apex to enable synchronized batch normalization

git clone https://github.com/NVIDIA/apex.git
cd apex
pip install -v --no-cache-dir --global-option="--cpp_ext" --global-option="--cuda_ext" ./

Dataset

Please also cite the original papers if you use any of them in your work.

Dataset Notes on Dataset Split
ScanNet see ./data/scannet_split/
7scenes see ./data/7scenes/test.txt

Train a new model

In the training stage, our model takes a sequence of 5 frames as input, with a batch size of 4 sequences on 4 GPUs. We use the following code to train a model:

python -m torch.distributed.launch --nproc_per_node=4 train_hybrid.py  --using_apex  --sync_bn \
--datapath /userhome/35/xxlong/dataset/scannet_whole/  \
--testdatapath /userhome/35/xxlong/dataset/scannet_test/ \
--reloadscan True \
--batch_size 1 --seq_len 5 --mode train --summary_freq 10 \
--epochs 7 --lr 0.00004 --lrepochs 2,4,6,8:2 \
--logdir ./logs/hybrid_res50_ndepths64 \
--resnet 50 --ndepths 64 --IF_EST_transformer False \
--depth_min 0.1 --depth_max 10. |  tee -a ./logs/hybrid_res50_ndepths64/log.txt
bash train_hybrid.sh

Evaluation

Once the model is trained, the following command is used to evaluate test images given the trained_model.

Our model has two testing modes: Joint and ESTM

For Joint mode, run:

bash eval_hybrid.sh

For ESTM mode, run:

bash eval_hybrid_seq.sh

License

ESTDepth is MIT-licensed. The license applies to the pre-trained models as well.

Citation

Please cite as

@InProceedings{Long_2021_CVPR,
    author    = {Long, Xiaoxiao and Liu, Lingjie and Li, Wei and Theobalt, Christian and Wang, Wenping},
    title     = {Multi-view Depth Estimation using Epipolar Spatio-Temporal Networks},
    booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
    month     = {June},
    year      = {2021},
    pages     = {8258-8267}
Owner
Xiaoxiao Long Ph.D. student in HKU
[CVPR 2021] "Multimodal Motion Prediction with Stacked Transformers": official code implementation and project page.

mmTransformer Introduction This repo is official implementation for mmTransformer in pytorch. Currently, the core code of mmTransformer is implemented

DeciForce: Crossroads of Machine Perception and Autonomy 232 Dec 31, 2022
A general-purpose programming language, focused on simplicity, safety and stability.

The Rivet programming language A general-purpose programming language, focused on simplicity, safety and stability. Rivet's goal is to be a very power

The Rivet programming language 17 Dec 29, 2022
Towards Implicit Text-Guided 3D Shape Generation (CVPR2022)

Towards Implicit Text-Guided 3D Shape Generation Towards Implicit Text-Guided 3D Shape Generation (CVPR2022) Code for the paper [Towards Implicit Text

55 Dec 16, 2022
This repository contains the source code for the paper First Order Motion Model for Image Animation

!!! Check out our new paper and framework improved for articulated objects First Order Motion Model for Image Animation This repository contains the s

13k Jan 09, 2023
Crowd-Kit is a powerful Python library that implements commonly-used aggregation methods for crowdsourced annotation and offers the relevant metrics and datasets

Crowd-Kit: Computational Quality Control for Crowdsourcing Documentation Crowd-Kit is a powerful Python library that implements commonly-used aggregat

Toloka 125 Dec 30, 2022
TensorFlow tutorials and best practices.

Effective TensorFlow 2 Table of Contents Part I: TensorFlow 2 Fundamentals TensorFlow 2 Basics Broadcasting the good and the ugly Take advantage of th

Vahid Kazemi 8.7k Dec 31, 2022
Official implementation of Sparse Transformer-based Action Recognition

STAR Official implementation of S parse T ransformer-based A ction R ecognition Dataset download NTU RGB+D 60 action recognition of 2D/3D skeleton fro

Chonghan_Lee 15 Nov 02, 2022
Realtime_Multi-Person_Pose_Estimation

Introduction Multi Person PoseEstimation By PyTorch Results Require Pytorch Installation git submodule init && git submodule update Demo Download conv

tensorboy 1.3k Jan 05, 2023
Nsdf: A mesh SDF with just some code we can directly paste into our raymarcher

nsdf Representing SDFs of arbitrary meshes has been a bit tricky so far. Express

Jan Ivanecky 5 Feb 18, 2022
Object DGCNN and DETR3D, Our implementations are built on top of MMdetection3D.

This repo contains the implementations of Object DGCNN (https://arxiv.org/abs/2110.06923) and DETR3D (https://arxiv.org/abs/2110.06922). Our implementations are built on top of MMdetection3D.

Wang, Yue 539 Jan 07, 2023
(under submission) Bayesian Integration of a Generative Prior for Image Restoration

BIGPrior: Towards Decoupling Learned Prior Hallucination and Data Fidelity in Image Restoration Authors: Majed El Helou, and Sabine Süsstrunk {Note: p

Majed El Helou 22 Dec 17, 2022
Housing Price Prediction

This project aim was to predict the price of houses in the Boston area during the great financial crisis through regression, as well as classify houses into different quality categories according to

Florian Klement 1 Jan 27, 2022
Implicit Graph Neural Networks

Implicit Graph Neural Networks This repository is the official PyTorch implementation of "Implicit Graph Neural Networks". Fangda Gu*, Heng Chang*, We

Heng Chang 48 Nov 29, 2022
An evaluation toolkit for voice conversion models.

Voice-conversion-evaluation An evaluation toolkit for voice conversion models. Sample test pair Generate the metadata for evaluating models. The direc

30 Aug 29, 2022
The implementation of the paper "A Deep Feature Aggregation Network for Accurate Indoor Camera Localization".

A Deep Feature Aggregation Network for Accurate Indoor Camera Localization This is the PyTorch implementation of our paper "A Deep Feature Aggregation

9 Dec 09, 2022
GAN example for Keras. Cuz MNIST is too small and there should be something more realistic.

Keras-GAN-Animeface-Character GAN example for Keras. Cuz MNIST is too small and there should an example on something more realistic. Some results Trai

160 Sep 20, 2022
Official code for NeurIPS 2021 paper "Towards Scalable Unpaired Virtual Try-On via Patch-Routed Spatially-Adaptive GAN"

Towards Scalable Unpaired Virtual Try-On via Patch-Routed Spatially-Adaptive GAN Official code for NeurIPS 2021 paper "Towards Scalable Unpaired Virtu

68 Dec 21, 2022
This is the codebase for Diffusion Models Beat GANS on Image Synthesis.

This is the codebase for Diffusion Models Beat GANS on Image Synthesis.

OpenAI 3k Dec 26, 2022
Progressive Coordinate Transforms for Monocular 3D Object Detection

Progressive Coordinate Transforms for Monocular 3D Object Detection This repository is the official implementation of PCT. Introduction In this paper,

58 Nov 06, 2022
This is a simple backtesting framework to help you test your crypto currency trading. It includes a way to download and store historical crypto data and to execute a trading strategy.

You can use this simple crypto backtesting script to ensure your trading strategy is successful Minimal setup required and works well with static TP a

Andrei 154 Sep 12, 2022