CT-Net: Channel Tensorization Network for Video Classification

Related tags

Deep LearningCT-Net
Overview

[ICLR2021] CT-Net: Channel Tensorization Network for Video Classification

@inproceedings{
li2021ctnet,
title={{\{}CT{\}}-Net: Channel Tensorization Network for Video Classification},
author={Kunchang Li and Xianhang Li and Yali Wang and Jun Wang and Yu Qiao},
booktitle={International Conference on Learning Representations},
year={2021},
url={https://openreview.net/forum?id=UoaQUQREMOs}
}

PWC PWC PWC

Overview

[2021/6/3] We release the PyTorch code of CT-Net. More details and models will be available. img

Model Zoo

More models will be released in a month...

Now we release the model for visualization, please download it from here and put it in ./model. (passward: t3to)

Install

pip install -r requirements.txt

Dataset

In our paper, we conduct experiments on Kinetics-400, Something-Something V1&V2, UCF101, and HMDB51. Please refer to TSM repo for the detailed guide of data pre-processing.

Training and Testing

Please refer to scripts/train.sh and scripts/test.sh, more details can be found in the appendix of our paper.

Setting environment

source ./init.sh

Training

We use dense sampling and uniform sampling for Kinetics and Something-Something respecitively.

CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 \
python3 main.py something RGB \
     --root-log ./log \
     --root-model ./model \
     --arch resnet50 --model CT_Net --num-segments 8 \
     --gd 20 --lr 0.02 --unfrozen-epoch 0 --lr-type cos \
     --warmup 10 --tune-epoch 10 --tune-lr 0.02 --epochs 45 \
     --batch-size 8 -j 24 --dropout 0.3 --consensus-type=avg \
     --npb --num-total 7 --full-res --gpus 0 1 2 3 4 5 6 7 --suffix 2021

Testing

CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 \
python3 test_acc.py something RGB \
     --arch resnet50 --model CT_Net --num-segments 8 \
     --batch-size 64 -j 8 --consensus-type=avg \
     --resume ./model/ct_net_8f_r50.pth.tar \
     --npb --num-total 7 --evaluate --test-crops 1 --full-res --gpus 0 1 2 3 4 5 6 7

Demo and visiualization

See demo/show_cam.ipynb

  1. source ./init.sh
  2. cd demo
  3. jupyter notebook

img

Owner
CS Student
A stable algorithm for GAN training

DRAGAN (Deep Regret Analytic Generative Adversarial Networks) Link to our paper - https://arxiv.org/abs/1705.07215 Pytorch implementation (thanks!) -

195 Oct 10, 2022
Enabling Lightweight Fine-tuning for Pre-trained Language Model Compression based on Matrix Product Operators

Enabling Lightweight Fine-tuning for Pre-trained Language Model Compression based on Matrix Product Operators This is our Pytorch implementation for t

RUCAIBox 12 Jul 22, 2022
A simple but complete full-attention transformer with a set of promising experimental features from various papers

x-transformers A concise but fully-featured transformer, complete with a set of promising experimental features from various papers. Install $ pip ins

Phil Wang 2.3k Jan 03, 2023
Özlem Taşkın 0 Feb 23, 2022
joint detection and semantic segmentation, based on ultralytics/yolov5,

Multi YOLO V5——Detection and Semantic Segmentation Overeview This is my undergraduate graduation project which based on ultralytics YOLO V5 tag v5.0.

477 Jan 06, 2023
Code for unmixing audio signals in four different stems "drums, bass, vocals, others". The code is adapted from "Jukebox: A Generative Model for Music"

Status: Archive (code is provided as-is, no updates expected) Disclaimer This code is a based on "Jukebox: A Generative Model for Music" Paper We adju

Wadhah Zai El Amri 24 Dec 29, 2022
ML course - EPFL Machine Learning Course, Fall 2021

EPFL Machine Learning Course CS-433 Machine Learning Course, Fall 2021 Repository for all lecture notes, labs and projects - resources, code templates

EPFL Machine Learning and Optimization Laboratory 1k Jan 04, 2023
A high-level Python library for Quantum Natural Language Processing

lambeq About lambeq is a toolkit for quantum natural language processing (QNLP). Documentation: https://cqcl.github.io/lambeq/ User support: lambeq-su

Cambridge Quantum 315 Jan 01, 2023
A general-purpose, flexible, and easy-to-use simulator alongside an OpenAI Gym trading environment for MetaTrader 5 trading platform (Approved by OpenAI Gym)

gym-mtsim: OpenAI Gym - MetaTrader 5 Simulator MtSim is a simulator for the MetaTrader 5 trading platform alongside an OpenAI Gym environment for rein

Mohammad Amin Haghpanah 184 Dec 31, 2022
Implementation of momentum^2 teacher

Momentum^2 Teacher: Momentum Teacher with Momentum Statistics for Self-Supervised Learning Requirements All experiments are done with python3.6, torch

jemmy li 121 Sep 26, 2022
a grammar based feedback fuzzer

Nautilus NOTE: THIS IS AN OUTDATE REPOSITORY, THE CURRENT RELEASE IS AVAILABLE HERE. THIS REPO ONLY SERVES AS A REFERENCE FOR THE PAPER Nautilus is a

Chair for Sys­tems Se­cu­ri­ty 158 Dec 28, 2022
Official Code Implementation of the paper : XAI for Transformers: Better Explanations through Conservative Propagation

Official Code Implementation of The Paper : XAI for Transformers: Better Explanations through Conservative Propagation For the SST-2 and IMDB expermin

Ameen Ali 23 Dec 30, 2022
code for our BMVC 2021 paper "HCV: Hierarchy-Consistency Verification for Incremental Implicitly-Refined Classification"

HCV_IIRC code for our BMVC 2021 paper HCV: Hierarchy-Consistency Verification for Incremental Implicitly-Refined Classification by Kai Wang, Xialei Li

kai wang 13 Oct 03, 2022
The code for the CVPR 2021 paper Neural Deformation Graphs, a novel approach for globally-consistent deformation tracking and 3D reconstruction of non-rigid objects.

Neural Deformation Graphs Project Page | Paper | Video Neural Deformation Graphs for Globally-consistent Non-rigid Reconstruction Aljaž Božič, Pablo P

Aljaz Bozic 134 Dec 16, 2022
Simple image captioning model - CLIP prefix captioning.

CLIP prefix captioning. Inference Notebook: 🥳 New: 🥳 Our technical papar is finally out! Official implementation for the paper "ClipCap: CLIP Prefix

688 Jan 04, 2023
DRLib:A concise deep reinforcement learning library, integrating HER and PER for almost off policy RL algos.

DRLib:A concise deep reinforcement learning library, integrating HER and PER for almost off policy RL algos A concise deep reinforcement learning libr

329 Jan 03, 2023
BMVC 2021 Oral: code for BI-GCN: Boundary-Aware Input-Dependent Graph Convolution for Biomedical Image Segmentation

BMVC 2021 BI-GConv: Boundary-Aware Input-Dependent Graph Convolution for Biomedical Image Segmentation Necassary Dependencies: PyTorch 1.2.0 Python 3.

Yanda Meng 15 Nov 08, 2022
On Evaluation Metrics for Graph Generative Models

On Evaluation Metrics for Graph Generative Models Authors: Rylee Thompson, Boris Knyazev, Elahe Ghalebi, Jungtaek Kim, Graham Taylor This is the offic

13 Jan 07, 2023
[UNMAINTAINED] Automated machine learning for analytics & production

auto_ml Automated machine learning for production and analytics Installation pip install auto_ml Getting started from auto_ml import Predictor from au

Preston Parry 1.6k Jan 02, 2023