Object Database for Super Mario Galaxy 1/2.

Overview

Super Mario Galaxy Object Database

Welcome to the public object database for Super Mario Galaxy and Super Mario Galaxy 2. Here, we document all objects and classes that can be found in the Galaxy games. This includes information about their setup, properties and usage in the game. Everybody can contribute to this project. Please make sure that you've joined the Luma's Workshop Discord server. That's where major Galaxy modding and documentation takes place. Here's a short overview of all features:

  • Contains information about all objects and their classes.
  • Viewable dumps of all object occurrences in any stage.
  • Generator for Whitehole's (outdated) Object Database format.

All information about objects and classes are stored in the respective JSON files to keep things organized. For editing, please use the editor instead. It's easier and takes care of potential mistakes. XML files for use with Whitehole can be easily generated as well!

Setup

If you want to contribute, you have to set up some things. You can find plenty of tutorials regarding the setup of these if you are unsure:

  • Python 3.9 or newer. This specific version is needed for the Whitehole XML generator.
  • PyQt5, the Qt binding for Python. Install it using pip install PyQt5.
  • qdarkstyle, the dark mode interface. Install it using pip install qdarkstyle.

Guideline

  • As you can see, information is split between objects and classes. The main information about setups, functionality and parameters belong to the class specifications. Additional information, like a proper name for an object and brief descriptions belong to the object information.
  • As of now, we document the objects from Super Mario Galaxy 2 only. Some objects and classes differ from their SMG1 counterparts. It will be hard to keep track of these differences if we mix in the research for both games at once. Therefore, we'll have to finish the SMG2 stuff first. But SMG1's objects and classes will definitely be added in the future.
  • Don't mark a class as finished/complete! I still need to verify if the information is correct by looking into the game's code.
  • There are some class parameters that are only usable by specific objects, for example SunakazeKun's Obj_arg0. You can list any exclusive objects in a parameters "Exclusive" list.
  • If you want to specify special values for a parameter, you can do that using the "Values" field. Each line corresponds to a different value.
  • Game specific terms should be treated like names. Starbit or starbit becomes Star Bit, coins becomes Coins, ground pound becomes Ground Pound and so on.
  • Most of the time, categories are pretty straightforward. However, you may get confused about Stage Parts and Level Features. The former includes objects that you can find in specific galaxies. The latter includes stuff like the crystal cages, various decorative objects and reusable assets that may not really be specific to a stage. If you are unsure, just ask me.
  • Keep the usage of rounded brackets at a minimum. Put this in square brackets instead. Also, keep naming objects like "Version A" or "Section B" at a minimum. Try to be precise.
  • For Stage Parts, make sure to include the name of the stage in the object's descriptive name. Examples: "Rightside Down -- Intro Planet", "Rolling Coaster -- Star Ball Opener", "Battle Belt -- Land Urchin Planet", ...
Owner
Aurum
German video game modder. Currently doing my bachelor.
Aurum
Self-supervised learning (SSL) is a method of machine learning

Self-supervised learning (SSL) is a method of machine learning. It learns from unlabeled sample data. It can be regarded as an intermediate form between supervised and unsupervised learning.

Ashish Patel 4 May 26, 2022
Unofficial implementation of Alias-Free Generative Adversarial Networks. (https://arxiv.org/abs/2106.12423) in PyTorch

alias-free-gan-pytorch Unofficial implementation of Alias-Free Generative Adversarial Networks. (https://arxiv.org/abs/2106.12423) This implementation

Kim Seonghyeon 502 Jan 03, 2023
Ejemplo Algoritmo Viterbi - Example of a Viterbi algorithm applied to a hidden Markov model on DNA sequence

Ejemplo Algoritmo Viterbi Ejemplo de un algoritmo Viterbi aplicado a modelo ocul

Mateo Velásquez Molina 1 Jan 10, 2022
Official implementation of NeurIPS'21: Implicit SVD for Graph Representation Learning

isvd Official implementation of NeurIPS'21: Implicit SVD for Graph Representation Learning If you find this code useful, you may cite us as: @inprocee

Sami Abu-El-Haija 16 Jan 08, 2023
A crossplatform menu bar application using mpv as DLNA Media Renderer.

Macast Chinese README A menu bar application using mpv as DLNA Media Renderer. Install MacOS || Windows || Debian Download link: Macast release latest

4.4k Jan 01, 2023
The repository contains reproducible PyTorch source code of our paper Generative Modeling with Optimal Transport Maps, ICLR 2022.

Generative Modeling with Optimal Transport Maps The repository contains reproducible PyTorch source code of our paper Generative Modeling with Optimal

Litu Rout 30 Dec 22, 2022
[CVPR 2021] Unsupervised Degradation Representation Learning for Blind Super-Resolution

DASR Pytorch implementation of "Unsupervised Degradation Representation Learning for Blind Super-Resolution", CVPR 2021 [arXiv] Overview Requirements

Longguang Wang 318 Dec 24, 2022
[NeurIPS 2021] Well-tuned Simple Nets Excel on Tabular Datasets

[NeurIPS 2021] Well-tuned Simple Nets Excel on Tabular Datasets Introduction This repo contains the source code accompanying the paper: Well-tuned Sim

52 Jan 04, 2023
Code for "Continuous-Time Meta-Learning with Forward Mode Differentiation" (ICLR 2022)

Continuous-Time Meta-Learning with Forward Mode Differentiation ICLR 2022 (Spotlight) - Installation - Example - Citation This repository contains the

Tristan Deleu 25 Oct 20, 2022
One implementation of the paper "DMRST: A Joint Framework for Document-Level Multilingual RST Discourse Segmentation and Parsing".

Introduction One implementation of the paper "DMRST: A Joint Framework for Document-Level Multilingual RST Discourse Segmentation and Parsing". Users

seq-to-mind 18 Dec 11, 2022
Simple and Effective Few-Shot Named Entity Recognition with Structured Nearest Neighbor Learning

structshot Code and data for paper "Simple and Effective Few-Shot Named Entity Recognition with Structured Nearest Neighbor Learning", Yi Yang and Arz

ASAPP Research 47 Dec 27, 2022
You are AllSet: A Multiset Function Framework for Hypergraph Neural Networks.

AllSet This is the repo for our paper: You are AllSet: A Multiset Function Framework for Hypergraph Neural Networks. We prepared all codes and a subse

Jianhao 51 Dec 24, 2022
Anti-Adversarially Manipulated Attributions for Weakly and Semi-Supervised Semantic Segmentation (CVPR 2021)

Anti-Adversarially Manipulated Attributions for Weakly and Semi-Supervised Semantic Segmentation Input Image Initial CAM Successive Maps with adversar

Jungbeom Lee 110 Dec 07, 2022
Official PyTorch Implementation of "AgentFormer: Agent-Aware Transformers for Socio-Temporal Multi-Agent Forecasting".

AgentFormer This repo contains the official implementation of our paper: AgentFormer: Agent-Aware Transformers for Socio-Temporal Multi-Agent Forecast

Ye Yuan 161 Dec 23, 2022
MetaBalance: High-Performance Neural Networks for Class-Imbalanced Data

This repository is the official PyTorch implementation of Meta-Balance. Find the paper on arxiv MetaBalance: High-Performance Neural Networks for Clas

Arpit Bansal 20 Oct 18, 2021
Implementation of "Learning to Match Features with Seeded Graph Matching Network" ICCV2021

SGMNet Implementation PyTorch implementation of SGMNet for ICCV'21 paper "Learning to Match Features with Seeded Graph Matching Network", by Hongkai C

87 Dec 11, 2022
Code for Multinomial Diffusion

Code for Multinomial Diffusion Abstract Generative flows and diffusion models have been predominantly trained on ordinal data, for example natural ima

104 Jan 04, 2023
Real-time Object Detection for Streaming Perception, CVPR 2022

StreamYOLO Real-time Object Detection for Streaming Perception Jinrong Yang, Songtao Liu, Zeming Li, Xiaoping Li, Sun Jian Real-time Object Detection

Jinrong Yang 237 Dec 27, 2022
Code for the paper "VisualBERT: A Simple and Performant Baseline for Vision and Language"

This repository contains code for the following two papers: VisualBERT: A Simple and Performant Baseline for Vision and Language (arxiv) with a short

Natural Language Processing @UCLA 463 Dec 09, 2022
Its a Plant Leaf Disease Detection System based on Machine Learning.

My_Project_Code Its a Plant Leaf Disease Detection System based on Machine Learning. I have used Tomato Leaves Dataset from kaggle. This system detect

Sanskriti Sidola 3 Jun 15, 2022