HHP-Net: A light Heteroscedastic neural network for Head Pose estimation with uncertainty

Related tags

Deep LearningHHP-Net
Overview

HHP-Net: A light Heteroscedastic neural network for Head Pose estimation with uncertainty

Giorgio Cantarini, Francesca Odone, Nicoletta Noceti, Federico Tomenotti - WACV 2022

Abstract: In this paper we introduce a novel method to estimate the head pose of people in single images starting from a small set of head keypoints. To this purpose, we propose a regression model that exploits keypoints and outputs the head pose represented by yaw, pitch, and roll. Our model is simple to implement and more efficient with respect to the state of the art -- faster in inference and smaller in terms of memory occupancy -- with comparable accuracy. Our method also provides a measure of the heteroscedastic uncertainties associated with the three angles, through an appropriately designed loss function. As an example application, we address social interaction analysis in images: we propose an algorithm for a quantitative estimation of the level of interaction between people, starting from their head poses and reasoning on their mutual positions. ArXiv

Any questions or discussions are welcomed!

Installation

To download the repository:

git clone https://github.com/cantarinigiorgio/HHP-Net

To install the requirements:

pip install -r requirements.txt

Network architecture

Demo

There are different choices for the key points detector: in this repository we propose two variants

  • a normal version, very precise but less efficient
  • a faster version less accurate but faster

Normal version

We test three different backbones of CenterNet (HourGlass104, Resnet50V2 and Resnet50V1 available in the TensorFlow 2 Detection Model Zoo); each model takes as input 512x512 images.

Download one of the previous model (e.g. HourGlass104) then extract it to HHP-Net/centernet/ with:

tar -zxvf centernet_hg104_512x512_kpts_coco17_tpu-32.tar.gz -C /HHP-Net/centernet

To make inference on a single image, run:

python inference_on_image.py [--detection-model PATH_DETECTION_MODEL] [--hhp-model PATH_HHPNET] [--image PATH_IMAGE]  

To make inference on frames from the webcam, run:

python inference_on_webcam.py [--detection-model PATH_DETECTION_MODEL] [--hhp-model PATH_HHPNET] 

Faster version

To estimate the keypoints firstly we use an object detection model for detecting people; then we exploit a model to estimate the pose of each people detected by the previous model in the image.

In order to detect people we test Centernet MobilenetV2: download it and then extract it to HHP-Net/centernet/:

tar -zxvf centernet_mobilenetv2fpn_512x512_coco17_od.tar.gz -C /HHP-Net/centernet

Then download Posenet for pose estimation and move to HHP-Net/posenet/

mv posenet_mobilenet_v1_100_257x257_multi_kpt_stripped.tflite HHP-Net/posenet/

To make inference on a single image, run:

python fast_inference_on_image.py [--detection-model PATH_MODEL_DETECTION] [--pose-model PATH_MODEL_POSE] [--hhp-model PATH_HHPNET] [--image PATH_IMAGE] 

To make inference on frames from the webcam, run:

python fast_inference_on_webcam.py [--detection-model PATH_MODEL_DETECTION] [--pose-model PATH_MODEL_POSE] [--hhp-model PATH_HHPNET] 

Citation

If you find this code useful for your research, please use the following BibTeX entry.

@misc{cantarini2021hhpnet,
      title={HHP-Net: A light Heteroscedastic neural network for Head Pose estimation with uncertainty}, 
      author={Giorgio Cantarini and Federico Figari Tomenotti and Nicoletta Noceti and Francesca Odone},
      year={2021},
      eprint={2111.01440},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

Code Author

  • Giorgio Cantarini - Imavis s.r.l. and Malga (Machine Learning Genoa Center)
Owner
Computer Vision Engineer at Imavis s.r.l.
code and data for paper "GIANT: Scalable Creation of a Web-scale Ontology"

GIANT Code and data for paper "GIANT: Scalable Creation of a Web-scale Ontology" https://arxiv.org/pdf/2004.02118.pdf Please cite our paper if this pr

Excalibur 39 Dec 29, 2022
Welcome to The Eigensolver Quantum School, a quantum computing crash course designed by students for students.

TEQS Welcome to The Eigensolver Quantum School, a crash course designed by students for students. The aim of this program is to take someone who has n

The Eigensolvers 53 May 18, 2022
Numerical differential equation solvers in JAX. Autodifferentiable and GPU-capable.

Diffrax Numerical differential equation solvers in JAX. Autodifferentiable and GPU-capable. Diffrax is a JAX-based library providing numerical differe

Patrick Kidger 717 Jan 09, 2023
Head2Toe: Utilizing Intermediate Representations for Better OOD Generalization

Head2Toe: Utilizing Intermediate Representations for Better OOD Generalization Code for reproducing our results in the Head2Toe paper. Paper: arxiv.or

Google Research 62 Dec 12, 2022
Vision Transformer and MLP-Mixer Architectures

Vision Transformer and MLP-Mixer Architectures Update (2.7.2021): Added the "When Vision Transformers Outperform ResNets..." paper, and SAM (Sharpness

Google Research 6.4k Jan 04, 2023
Text Generation by Learning from Demonstrations

Text Generation by Learning from Demonstrations The README was last updated on March 7, 2021. The repo is based on fairseq (v0.9.?). Paper arXiv Prere

38 Oct 21, 2022
ICLR 2021: Pre-Training for Context Representation in Conversational Semantic Parsing

SCoRe: Pre-Training for Context Representation in Conversational Semantic Parsing This repository contains code for the ICLR 2021 paper "SCoRE: Pre-Tr

Microsoft 28 Oct 02, 2022
Torch Implementation of "Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network"

Photo-Realistic-Super-Resoluton Torch Implementation of "Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network" [Paper]

Harry Yang 199 Dec 01, 2022
NeWT: Natural World Tasks

NeWT: Natural World Tasks This repository contains resources for working with the NeWT dataset. ❗ At this time the binary tasks are not publicly avail

Visipedia 26 Oct 18, 2022
Automatic Differentiation Multipole Moment Molecular Forcefield

Automatic Differentiation Multipole Moment Molecular Forcefield Performance notes On a single gpu, using waterbox_31ang.pdb example from MPIDplugin wh

4 Jan 07, 2022
A full pipeline AutoML tool for tabular data

HyperGBM Doc | 中文 We Are Hiring! Dear folks,we are offering challenging opportunities located in Beijing for both professionals and students who are k

DataCanvas 240 Jan 03, 2023
Full-featured Decision Trees and Random Forests learner.

CID3 This is a full-featured Decision Trees and Random Forests learner. It can save trees or forests to disk for later use. It is possible to query tr

Alejandro Penate-Diaz 3 Aug 15, 2022
Keras implementations of Generative Adversarial Networks.

This repository has gone stale as I unfortunately do not have the time to maintain it anymore. If you would like to continue the development of it as

Erik Linder-Norén 8.9k Jan 04, 2023
Framework for Spectral Clustering on the Sparse Coefficients of Learned Dictionaries

Dictionary Learning for Clustering on Hyperspectral Images Overview Framework for Spectral Clustering on the Sparse Coefficients of Learned Dictionari

Joshua Bruton 6 Oct 25, 2022
Parris, the automated infrastructure setup tool for machine learning algorithms.

README Parris, the automated infrastructure setup tool for machine learning algorithms. What Is This Tool? Parris is a tool for automating the trainin

Joseph Greene 319 Aug 02, 2022
Deep Image Matting implementation in PyTorch

Deep Image Matting Deep Image Matting paper implementation in PyTorch. Differences "fc6" is dropped. Indices pooling. "fc6" is clumpy, over 100 millio

Yang Liu 724 Dec 27, 2022
Python script to download the celebA-HQ dataset from google drive

download-celebA-HQ Python script to download and create the celebA-HQ dataset. WARNING from the author. I believe this script is broken since a few mo

133 Dec 21, 2022
This project intends to use SVM supervised learning to determine whether or not an individual is diabetic given certain attributes.

Diabetes Prediction Using SVM I explore a diabetes prediction algorithm using a Diabetes dataset. Using a Support Vector Machine for my prediction alg

Jeff Shen 1 Jan 14, 2022
Code and Experiments for ACL-IJCNLP 2021 Paper Mind Your Outliers! Investigating the Negative Impact of Outliers on Active Learning for Visual Question Answering.

Code and Experiments for ACL-IJCNLP 2021 Paper Mind Your Outliers! Investigating the Negative Impact of Outliers on Active Learning for Visual Question Answering.

Sidd Karamcheti 50 Nov 16, 2022
This repository contains the code for the paper "Hierarchical Motion Understanding via Motion Programs"

Hierarchical Motion Understanding via Motion Programs (CVPR 2021) This repository contains the official implementation of: Hierarchical Motion Underst

Sumith Kulal 40 Dec 05, 2022