HHP-Net: A light Heteroscedastic neural network for Head Pose estimation with uncertainty

Related tags

Deep LearningHHP-Net
Overview

HHP-Net: A light Heteroscedastic neural network for Head Pose estimation with uncertainty

Giorgio Cantarini, Francesca Odone, Nicoletta Noceti, Federico Tomenotti - WACV 2022

Abstract: In this paper we introduce a novel method to estimate the head pose of people in single images starting from a small set of head keypoints. To this purpose, we propose a regression model that exploits keypoints and outputs the head pose represented by yaw, pitch, and roll. Our model is simple to implement and more efficient with respect to the state of the art -- faster in inference and smaller in terms of memory occupancy -- with comparable accuracy. Our method also provides a measure of the heteroscedastic uncertainties associated with the three angles, through an appropriately designed loss function. As an example application, we address social interaction analysis in images: we propose an algorithm for a quantitative estimation of the level of interaction between people, starting from their head poses and reasoning on their mutual positions. ArXiv

Any questions or discussions are welcomed!

Installation

To download the repository:

git clone https://github.com/cantarinigiorgio/HHP-Net

To install the requirements:

pip install -r requirements.txt

Network architecture

Demo

There are different choices for the key points detector: in this repository we propose two variants

  • a normal version, very precise but less efficient
  • a faster version less accurate but faster

Normal version

We test three different backbones of CenterNet (HourGlass104, Resnet50V2 and Resnet50V1 available in the TensorFlow 2 Detection Model Zoo); each model takes as input 512x512 images.

Download one of the previous model (e.g. HourGlass104) then extract it to HHP-Net/centernet/ with:

tar -zxvf centernet_hg104_512x512_kpts_coco17_tpu-32.tar.gz -C /HHP-Net/centernet

To make inference on a single image, run:

python inference_on_image.py [--detection-model PATH_DETECTION_MODEL] [--hhp-model PATH_HHPNET] [--image PATH_IMAGE]  

To make inference on frames from the webcam, run:

python inference_on_webcam.py [--detection-model PATH_DETECTION_MODEL] [--hhp-model PATH_HHPNET] 

Faster version

To estimate the keypoints firstly we use an object detection model for detecting people; then we exploit a model to estimate the pose of each people detected by the previous model in the image.

In order to detect people we test Centernet MobilenetV2: download it and then extract it to HHP-Net/centernet/:

tar -zxvf centernet_mobilenetv2fpn_512x512_coco17_od.tar.gz -C /HHP-Net/centernet

Then download Posenet for pose estimation and move to HHP-Net/posenet/

mv posenet_mobilenet_v1_100_257x257_multi_kpt_stripped.tflite HHP-Net/posenet/

To make inference on a single image, run:

python fast_inference_on_image.py [--detection-model PATH_MODEL_DETECTION] [--pose-model PATH_MODEL_POSE] [--hhp-model PATH_HHPNET] [--image PATH_IMAGE] 

To make inference on frames from the webcam, run:

python fast_inference_on_webcam.py [--detection-model PATH_MODEL_DETECTION] [--pose-model PATH_MODEL_POSE] [--hhp-model PATH_HHPNET] 

Citation

If you find this code useful for your research, please use the following BibTeX entry.

@misc{cantarini2021hhpnet,
      title={HHP-Net: A light Heteroscedastic neural network for Head Pose estimation with uncertainty}, 
      author={Giorgio Cantarini and Federico Figari Tomenotti and Nicoletta Noceti and Francesca Odone},
      year={2021},
      eprint={2111.01440},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

Code Author

  • Giorgio Cantarini - Imavis s.r.l. and Malga (Machine Learning Genoa Center)
Owner
Computer Vision Engineer at Imavis s.r.l.
A complete, self-contained example for training ImageNet at state-of-the-art speed with FFCV

ffcv ImageNet Training A minimal, single-file PyTorch ImageNet training script designed for hackability. Run train_imagenet.py to get... ...high accur

FFCV 92 Dec 31, 2022
A fast, dataset-agnostic, deep visual search engine for digital art history

imgs.ai imgs.ai is a fast, dataset-agnostic, deep visual search engine for digital art history based on neural network embeddings. It utilizes modern

Fabian Offert 5 Dec 14, 2022
Let's Git - Versionsverwaltung & Open Source Hausaufgabe

Let's Git - Versionsverwaltung & Open Source Hausaufgabe Herzlich Willkommen zu dieser Hausaufgabe für unseren MOOC: Let's Git! Wir hoffen, dass Du vi

1 Dec 13, 2021
Social Network Ads Prediction

Social network advertising, also social media targeting, is a group of terms that are used to describe forms of online advertising that focus on social networking services.

Khazar 2 Jan 28, 2022
Deep GPs built on top of TensorFlow/Keras and GPflow

GPflux Documentation | Tutorials | API reference | Slack What does GPflux do? GPflux is a toolbox dedicated to Deep Gaussian processes (DGP), the hier

Secondmind Labs 107 Nov 02, 2022
My implementation of transformers related papers for computer vision in pytorch

vision_transformers This is my personnal repo to implement new transofrmers based and other computer vision DL models I am currenlty working without a

samsja 1 Nov 10, 2021
NeoPlay is the project dedicated to ESport events.

NeoPlay is the project dedicated to ESport events. On this platform users can participate in tournaments with prize pools as well as create their own tournaments.

3 Dec 18, 2021
POT : Python Optimal Transport

POT: Python Optimal Transport This open source Python library provide several solvers for optimization problems related to Optimal Transport for signa

Python Optimal Transport 1.7k Dec 31, 2022
Calling Julia from Python - an experiment on data loading

Calling Julia from Python - an experiment on data loading See the slides. TLDR After reading Patrick's blog post, we decided to try to replace C++ wit

Abel Siqueira 8 Jun 07, 2022
Neuron Merging: Compensating for Pruned Neurons (NeurIPS 2020)

Neuron Merging: Compensating for Pruned Neurons Pytorch implementation of Neuron Merging: Compensating for Pruned Neurons, accepted at 34th Conference

Woojeong Kim 33 Dec 30, 2022
Surrogate- and Invariance-Boosted Contrastive Learning (SIB-CL)

Surrogate- and Invariance-Boosted Contrastive Learning (SIB-CL) This repository contains all source code used to generate the results in the article "

Charlotte Loh 3 Jul 23, 2022
This is the code related to "Sparse-to-dense Feature Matching: Intra and Inter domain Cross-modal Learning in Domain Adaptation for 3D Semantic Segmentation" (ICCV 2021).

Sparse-to-dense Feature Matching: Intra and Inter domain Cross-modal Learning in Domain Adaptation for 3D Semantic Segmentation This is the code relat

39 Sep 23, 2022
Meli Data Challenge 2021 - First Place Solution

My solution for the Meli Data Challenge 2021

Matias Moreyra 23 Mar 09, 2022
This is the 3D Implementation of 《Inconsistency-aware Uncertainty Estimation for Semi-supervised Medical Image Segmentation》

CoraNet This is the 3D Implementation of 《Inconsistency-aware Uncertainty Estimation for Semi-supervised Medical Image Segmentation》 Environment pytor

25 Nov 08, 2022
Stochastic gradient descent with model building

Stochastic Model Building (SMB) This repository includes a new fast and robust stochastic optimization algorithm for training deep learning models. Th

S. Ilker Birbil 22 Jan 19, 2022
This is a deep learning-based method to segment deep brain structures and a brain mask from T1 weighted MRI.

DBSegment This tool generates 30 deep brain structures segmentation, as well as a brain mask from T1-Weighted MRI. The whole procedure should take ~1

Luxembourg Neuroimaging (Platform OpNeuroImg) 2 Oct 25, 2022
SCAAML is a deep learning framwork dedicated to side-channel attacks run on top of TensorFlow 2.x.

SCAAML (Side Channel Attacks Assisted with Machine Learning) is a deep learning framwork dedicated to side-channel attacks. It is written in python and run on top of TensorFlow 2.x.

Google 69 Dec 21, 2022
The mini-AlphaStar (mini-AS, or mAS) - mini-scale version (non-official) of the AlphaStar (AS)

A mini-scale reproduction code of the AlphaStar program. Note: the original AlphaStar is the AI proposed by DeepMind to play StarCraft II.

Ruo-Ze Liu 216 Jan 04, 2023
A TensorFlow implementation of SOFA, the Simulator for OFfline LeArning and evaluation.

SOFA This repository is the implementation of SOFA, the Simulator for OFfline leArning and evaluation. Keeping Dataset Biases out of the Simulation: A

22 Nov 23, 2022
Anime Face Detector using mmdet and mmpose

Anime Face Detector This is an anime face detector using mmdetection and mmpose. (To avoid copyright issues, I use generated images by the TADNE model

198 Jan 07, 2023