Predicting Semantic Map Representations from Images with Pyramid Occupancy Networks

Overview

Predicting Semantic Map Representations from Images with Pyramid Occupancy Networks

This is the code associated with the paper Predicting Semantic Map Representations from Images with Pyramid Occupancy Networks, published at CVPR 2020.

Pyramid Occupancy Network architecture

Data generation

In our work we report results on two large-scale autonomous driving datasets: NuScenes and Argoverse. The birds-eye-view ground truth labels we use to train and evaluate our networks are generated by combining map information provided by the two datasets with 3D bounding box annotations, which we rasterise to produce a set of one-hot binary labels. We also make use of LiDAR point clouds to infer regions of the birds-eye-view which are completely occluded by buildings or other objects.

NuScenes

To train our method on NuScenes you will first need to

  1. Download the NuScenes dataset which can be found at https://www.nuscenes.org/download. Only the metadata, keyframe and lidar blobs are necessary.
  2. Download the map expansion pack. Note that to replicate our original results you should use the original version of the expansion (v1.0). The later versions fixed some bugs with the original maps so we would expect even better performance!
  3. Install the NuScenes devkit from https://github.com/nutonomy/nuscenes-devkit
  4. Cd to mono-semantic-maps
  5. Edit the configs/datasets/nuscenes.yml file, setting the dataroot and label_root entries to the location of the NuScenes dataset and the desired ground truth folder respectively.
  6. Run our data generation script: python scripts/make_nuscenes_labels.py. Bewarned there's a lot of data so this will take a few hours to run!

Argoverse

To train on the Argoverse dataset:

  1. Download the Argoverse tracking data from https://www.argoverse.org/data.html#tracking-link. Our models were trained on version 1.1, you will need to download the four training blobs, validation blob, and the HD map data.
  2. Install the Argoverse devkit from https://github.com/argoai/argoverse-api
  3. Cd to mono-semantic-maps
  4. Edit the configs/datasets/argoverse.yml file, setting the dataroot and label_root entries to the location of the install Argoverse data and the desired ground truth folder respectively.
  5. Run our data generation script: python scripts/make_argoverse_labels.py. This script will also take a while to run!

Training

Once ground truth labels have been generated, you can train our method by running the train.py script in the root directory:

python train.py --dataset nuscenes --model pyramid

The --dataset flag allows you to specify the dataset to train on, either 'argoverse' or 'nuscenes'. The model flag allows training of the proposed method 'pyramid', or one of the baseline methods ('vpn' or 'ved'). Additional command line options can be specified by passing a list of key-value pairs to the --options flag. The full list of configurable options can be found in the configs/defaults.yml file.

Owner
Thomas Roddick
Thomas Roddick
Tooling for GANs in TensorFlow

TensorFlow-GAN (TF-GAN) TF-GAN is a lightweight library for training and evaluating Generative Adversarial Networks (GANs). Can be installed with pip

803 Dec 24, 2022
[IJCAI-2021] A benchmark of data-free knowledge distillation from paper "Contrastive Model Inversion for Data-Free Knowledge Distillation"

DataFree A benchmark of data-free knowledge distillation from paper "Contrastive Model Inversion for Data-Free Knowledge Distillation" Authors: Gongfa

ZJU-VIPA 47 Jan 09, 2023
HNN: Human (Hollywood) Neural Network

HNN: Human (Hollywood) Neural Network Learn the top 1000 actors on IMDB with your very own low cost, highly parallel, CUDAless biological neural netwo

Madhava Jay 0 Dec 21, 2021
PyTorch implementation of Munchausen Reinforcement Learning based on DQN and SAC. Handles discrete and continuous action spaces

Exploring Munchausen Reinforcement Learning This is the project repository of my team in the "Advanced Deep Learning for Robotics" course at TUM. Our

Mohamed Amine Ketata 10 Mar 10, 2022
Supervised forecasting of sequential data in Python.

Supervised forecasting of sequential data in Python. Intro Supervised forecasting is the machine learning task of making predictions for sequential da

The Alan Turing Institute 54 Nov 15, 2022
Gradient representations in ReLU networks as similarity functions

Gradient representations in ReLU networks as similarity functions by Dániel Rácz and Bálint Daróczy. This repo contains the python code related to our

1 Oct 08, 2021
Gas detection for Raspberry Pi using ADS1x15 and MQ-2 sensors

Gas detection Gas detection for Raspberry Pi using ADS1x15 and MQ-2 sensors. Description The MQ-2 sensor can detect multiple gases (CO, H2, CH4, LPG,

Filip Š 15 Sep 30, 2022
RobustART: Benchmarking Robustness on Architecture Design and Training Techniques

The first comprehensive Robustness investigation benchmark on large-scale dataset ImageNet regarding ARchitecture design and Training techniques towards diverse noises.

132 Dec 23, 2022
An open-access benchmark and toolbox for electricity price forecasting

epftoolbox The epftoolbox is the first open-access library for driving research in electricity price forecasting. Its main goal is to make available a

97 Dec 05, 2022
A Demo server serving Bert through ONNX with GPU written in Rust with <3

Demo BERT ONNX server written in rust This demo showcase the use of onnxruntime-rs on BERT with a GPU on CUDA 11 served by actix-web and tokenized wit

Xavier Tao 28 Jan 01, 2023
Code for HodgeNet: Learning Spectral Geometry on Triangle Meshes, in SIGGRAPH 2021.

HodgeNet | Webpage | Paper | Video HodgeNet: Learning Spectral Geometry on Triangle Meshes Dmitriy Smirnov, Justin Solomon SIGGRAPH 2021 Set-up To ins

Dima Smirnov 61 Nov 27, 2022
FCOS: Fully Convolutional One-Stage Object Detection (ICCV'19)

FCOS: Fully Convolutional One-Stage Object Detection This project hosts the code for implementing the FCOS algorithm for object detection, as presente

Tian Zhi 3.1k Jan 05, 2023
Code for Private Recommender Systems: How Can Users Build Their Own Fair Recommender Systems without Log Data? (SDM 2022)

Private Recommender Systems: How Can Users Build Their Own Fair Recommender Systems without Log Data? (SDM 2022) We consider how a user of a web servi

joisino 20 Aug 21, 2022
Minimal But Practical Image Classifier Pipline Using Pytorch, Finetune on ResNet18, Got 99% Accuracy on Own Small Datasets.

PyTorch Image Classifier Updates As for many users request, I released a new version of standared pytorch immage classification example at here: http:

JinTian 106 Nov 06, 2022
A curated list of the top 10 computer vision papers in 2021 with video demos, articles, code and paper reference.

The Top 10 Computer Vision Papers of 2021 The top 10 computer vision papers in 2021 with video demos, articles, code, and paper reference. While the w

Louis-François Bouchard 118 Dec 21, 2022
Image to Image translation, image generataton, few shot learning

Semi-supervised Learning for Few-shot Image-to-Image Translation [paper] Abstract: In the last few years, unpaired image-to-image translation has witn

yaxingwang 49 Nov 18, 2022
Python PID Tuner - Based on a FOPDT model obtained using a Open Loop Process Reaction Curve

PythonPID_Tuner Step 1: Takes a Process Reaction Curve in csv format - assumes data at 100ms interval (column names CV and PV) Step 2: Makes a rough e

6 Jan 14, 2022
Team nan solution repository for FPT data-centric competition. Data augmentation, Albumentation, Mosaic, Visualization, KNN application

FPT_data_centric_competition - Team nan solution repository for FPT data-centric competition. Data augmentation, Albumentation, Mosaic, Visualization, KNN application

Pham Viet Hoang (Harry) 2 Oct 30, 2022
[NeurIPS 2020] Code for the paper "Balanced Meta-Softmax for Long-Tailed Visual Recognition"

Balanced Meta-Softmax Code for the paper Balanced Meta-Softmax for Long-Tailed Visual Recognition Jiawei Ren, Cunjun Yu, Shunan Sheng, Xiao Ma, Haiyu

Jiawei Ren 65 Dec 21, 2022
Danfeng Hong, Lianru Gao, Jing Yao, Bing Zhang, Antonio Plaza, Jocelyn Chanussot. Graph Convolutional Networks for Hyperspectral Image Classification, IEEE TGRS, 2021.

Graph Convolutional Networks for Hyperspectral Image Classification Danfeng Hong, Lianru Gao, Jing Yao, Bing Zhang, Antonio Plaza, Jocelyn Chanussot T

Danfeng Hong 154 Dec 13, 2022