Privacy-Preserving Machine Learning (PPML) Tutorial Presented at PyConDE 2022

Overview

PPML: Machine Learning on Data you cannot see

Repository for the tutorial on Privacy-Preserving Machine Learning (PPML) presented at PyConDE 2022

Abstract

Privacy guarantees are one of the most crucial requirements when it comes to analyse sensitive information. However, data anonymisation techniques alone do not always provide complete privacy protection; moreover Machine Learning (ML) models could also be exploited to leak sensitive data when attacked and no counter-measure is put in place.

Privacy-preserving machine learning (PPML) methods hold the promise to overcome all those issues, allowing to train machine learning models with full privacy guarantees.

This workshop will be mainly organised in two parts. In the first part, we will explore one example of ML model exploitation (i.e. inference attack ) to reconstruct original data from a trained model, and we will then see how differential privacy can help us protecting the privacy of our model, with minimum disruption to the original pipeline. In the second part of the workshop, we will examine a more complicated ML scenario to train Deep learning networks on encrypted data, with specialised distributed federated learning strategies.

Outline

  • Introduction: Brief Intro to PPML and to the workshop (slides)

  • Part 1: Strengthening Deep Neural Networks

    • Model vulnerabilities:
    • Deep Learning with Differential Privacy
  • Part 2: Primer on Privacy-Preserving Machine Learning

Note: the material has been updated after the conference, to match the flow of the presentation as delivered during the conference, as well as to incorporate feedbacks received afterwards.

"PyConDE Logo" Video recording of the session presented at PyCon DE

Get the material

Clone the current repository, in order to get the course materials. To do so, once connected to your remote machine (via SSH), execute the following instructions:

cd $HOME  # This will make sure you'll be in your HOME folder
git clone https://github.com/leriomaggio/ppml-pyconde.git

Note: This will create a new folder named ppml-pyconde. Move into this folder by typing:

cd ppml-pyconde

Well done! Now you should do be in the right location. Bear with me another few seconds, following instructions reported below 🙏

Set up your Environment

To execute the notebooks in this repository, it is necessary to set up the environment.

Please refer to the Get-Ready.ipynb notebook for a step-by-step guide on how to setup the environment, and check that all is working, and ready to go.

Note: You could run this notebook directly in VSCode, or in your existing Jupyter notebook/lab environment:

jupyter notebook Get-Ready.ipynb

Colophon

Author: Valerio Maggio (@leriomaggio), Senior Research Associate, University of Bristol.

All the Code material is distributed under the terms of the Apache License. See LICENSE file for additional details.

All the instructional materials in this repository are free to use, and made available under the [Creative Commons Attribution license][https://creativecommons.org/licenses/by/4.0/]. The following is a human-readable summary of (and not a substitute for) the full legal text of the CC BY 4.0 license.

You are free:

  • to Share---copy and redistribute the material in any medium or format
  • to Adapt---remix, transform, and build upon the material

for any purpose, even commercially.

The licensor cannot revoke these freedoms as long as you follow the license terms.

Under the following terms:

  • Attribution---You must give appropriate credit (mentioning that your work is derived from work that is Copyright © Software Carpentry and, where practical, linking to http://software-carpentry.org/), provide a [link to the license][cc-by-human], and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.

No additional restrictions---You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.

Acknowledgment and funding

The material developed in this tutorial has been supported by the University of Bristol, and by the Software Sustainability Institute (SSI), as part of my SSI fellowship on PETs (Privacy Enchancing Technologies).

Please see this deck to know more about my fellowship plans.

I would also like to thank all the people at OpenMined for all the encouragement and support with the preparation of this tutorial. I hope the material in this repository could contribute to raise awareness about all the amazing work on PETs it's being provided to the Open Source and the Python communities.

SSI Logo UoB Logo OpenMined

Contacts

For any questions or doubts, feel free to open an issue in the repository, or drop me an email @ valerio.maggio_at_gmail_dot_com

You might also like...
Official implementation of GraphMask as presented in our paper Interpreting Graph Neural Networks for NLP With Differentiable Edge Masking.

GraphMask This repository contains an implementation of GraphMask, the interpretability technique for graph neural networks presented in our ICLR 2021

Official implementation of the network presented in the paper
Official implementation of the network presented in the paper "M4Depth: A motion-based approach for monocular depth estimation on video sequences"

M4Depth This is the reference TensorFlow implementation for training and testing depth estimation models using the method described in M4Depth: A moti

Code for the Population-Based Bandits Algorithm, presented at NeurIPS 2020.

Population-Based Bandits (PB2) Code for the Population-Based Bandits (PB2) Algorithm, from the paper Provably Efficient Online Hyperparameter Optimiza

Projects for AI/ML and IoT integration for games and other presented at re:Invent 2021.
Projects for AI/ML and IoT integration for games and other presented at re:Invent 2021.

Playground4AWS Projects for AI/ML and IoT integration for games and other presented at re:Invent 2021. Architecture Minecraft and Lamps This project i

Prototypical python implementation of the trust-region algorithm presented in Sequential Linearization Method for Bound-Constrained Mathematical Programs with Complementarity Constraints by Larson, Leyffer, Kirches, and Manns.

Prototypical python implementation of the trust-region algorithm presented in Sequential Linearization Method for Bound-Constrained Mathematical Programs with Complementarity Constraints by Larson, Leyffer, Kirches, and Manns.

Collection of TensorFlow2 implementations of Generative Adversarial Network varieties presented in research papers.
Collection of TensorFlow2 implementations of Generative Adversarial Network varieties presented in research papers.

TensorFlow2-GAN Collection of tf2.0 implementations of Generative Adversarial Network varieties presented in research papers. Model architectures will

Tensorflow implementation of the paper "HumanGPS: Geodesic PreServing Feature for Dense Human Correspondences", CVPR 2021.

HumanGPS: Geodesic PreServing Feature for Dense Human Correspondences Tensorflow implementation of the paper "HumanGPS: Geodesic PreServing Feature fo

clDice - a Novel Topology-Preserving Loss Function for Tubular Structure Segmentation
clDice - a Novel Topology-Preserving Loss Function for Tubular Structure Segmentation

README clDice - a Novel Topology-Preserving Loss Function for Tubular Structure Segmentation CVPR 2021 Authors: Suprosanna Shit and Johannes C. Paetzo

A Python implementation of the Locality Preserving Matching (LPM) method for pruning outliers in image matching.

LPM_Python A Python implementation of the Locality Preserving Matching (LPM) method for pruning outliers in image matching. The code is established ac

Releases(pyconde)
  • pyconde(Jun 14, 2022)

    Tutorial on Privacy-Preserving Machine Learning as presented at PyCon DE 2022 (https://2022.pycon.de/program/QHJ7SX/)

    Full Changelog: https://github.com/leriomaggio/ppml-tutorial/commits/pyconde

    Source code(tar.gz)
    Source code(zip)
Owner
Valerio Maggio
Data Scientist and Researcher @DynamicGenetics
Valerio Maggio
Rethinking Transformer-based Set Prediction for Object Detection

Rethinking Transformer-based Set Prediction for Object Detection Here are the code for the ICCV paper. The code is adapted from Detectron2 and AdelaiD

Zhiqing Sun 62 Dec 03, 2022
"Learning and Analyzing Generation Order for Undirected Sequence Models" in Findings of EMNLP, 2021

undirected-generation-dev This repo contains the source code of the models described in the following paper "Learning and Analyzing Generation Order f

Yichen Jiang 0 Mar 25, 2022
Official implementation of the paper "Steganographer Detection via a Similarity Accumulation Graph Convolutional Network"

SAGCN - Official PyTorch Implementation | Paper | Project Page This is the official implementation of the paper "Steganographer detection via a simila

ZHANG Zhi 1 Nov 26, 2021
Transport Mode detection - can detect the mode of transport with the help of features such as acceeration,jerk etc

title emoji colorFrom colorTo sdk app_file pinned Transport_Mode_Detector 🚀 purple yellow gradio app.py false Configuration title: string Display tit

Nishant Rajadhyaksha 3 Jan 16, 2022
3D HourGlass Networks for Human Pose Estimation Through Videos

3D-HourGlass-Network 3D CNN Based Hourglass Network for Human Pose Estimation (3D Human Pose) from videos. This was my summer'18 research project. Dis

Naman Jain 51 Jan 02, 2023
Python library for loading and using triangular meshes.

Trimesh is a pure Python (2.7-3.4+) library for loading and using triangular meshes with an emphasis on watertight surfaces. The goal of the library i

Michael Dawson-Haggerty 2.2k Jan 07, 2023
Does Pretraining for Summarization Reuqire Knowledge Transfer?

Pretraining summarization models using a corpus of nonsense

Approximately Correct Machine Intelligence (ACMI) Lab 12 Dec 19, 2022
Graph WaveNet apdapted for brain connectivity analysis.

Graph WaveNet for brain network analysis This is the implementation of the Graph WaveNet model used in our manuscript: S. Wein , A. Schüller, A. M. To

4 Dec 17, 2022
A Factor Model for Persistence in Investment Manager Performance

Factor-Model-Manager-Performance A Factor Model for Persistence in Investment Manager Performance I apply methods and processes similar to those used

Omid Arhami 1 Dec 01, 2021
Simulation of self-focusing of laser beams in condensed media

What is it? Program for scientific research, which allows to simulate the phenomenon of self-focusing of different laser beams (including Gaussian, ri

Evgeny Vasilyev 13 Dec 24, 2022
PyZebrascope - an open-source Python platform for brain-wide neural activity imaging in behaving zebrafish

PyZebrascope - an open-source Python platform for brain-wide neural activity imaging in behaving zebrafish

1 May 31, 2022
Sparse R-CNN: End-to-End Object Detection with Learnable Proposals, CVPR2021

End-to-End Object Detection with Learnable Proposal, CVPR2021

Peize Sun 1.2k Dec 27, 2022
Multiband spectro-radiometric satellite image analysis with K-means cluster algorithm

Multi-band Spectro Radiomertric Image Analysis with K-means Cluster Algorithm Overview Multi-band Spectro Radiomertric images are images comprising of

Chibueze Henry 6 Mar 16, 2022
Utility code for use with PyXLL

pyxll-utils There is no need to use this package as of PyXLL 5. All features from this package are now provided by PyXLL. If you were using this packa

PyXLL 10 Dec 18, 2021
Solutions and questions for AoC2021. Merry christmas!

Advent of Code 2021 Merry christmas! 🎄 🎅 To get solutions and approximate execution times for implementations, please execute the run.py script in t

Wilhelm Ågren 5 Dec 29, 2022
Code for "Diversity can be Transferred: Output Diversification for White- and Black-box Attacks"

Output Diversified Sampling (ODS) This is the github repository for the NeurIPS 2020 paper "Diversity can be Transferred: Output Diversification for W

50 Dec 11, 2022
This package contains a PyTorch Implementation of IB-GAN of the submitted paper in AAAI 2021

The PyTorch implementation of IB-GAN model of AAAI 2021 This package contains a PyTorch implementation of IB-GAN presented in the submitted paper (IB-

Insu Jeon 9 Mar 30, 2022
PyTorch implementation of a collections of scalable Video Transformer Benchmarks.

PyTorch implementation of Video Transformer Benchmarks This repository is mainly built upon Pytorch and Pytorch-Lightning. We wish to maintain a colle

Xin Ma 156 Jan 08, 2023
PyTorch inference for "Progressive Growing of GANs" with CelebA snapshot

Progressive Growing of GANs inference in PyTorch with CelebA training snapshot Description This is an inference sample written in PyTorch of the origi

320 Nov 21, 2022
Project page of the paper 'Analyzing Perception-Distortion Tradeoff using Enhanced Perceptual Super-resolution Network' (ECCVW 2018)

EPSR (Enhanced Perceptual Super-resolution Network) paper This repo provides the test code, pretrained models, and results on benchmark datasets of ou

Subeesh Vasu 78 Nov 19, 2022