An implementation of the research paper "Retina Blood Vessel Segmentation Using A U-Net Based Convolutional Neural Network"

Overview

Retina Blood Vessels Segmentation

This is an implementation of the research paper "Retina Blood Vessel Segmentation Using A U-Net Based Convolutional Neural Network" written by Wang Xiancheng, Li Weia, et al.

Check out the standalone demo notebook and run segRetino inferences here.

Open In Colab

Inspiration

Various eye diseases can be diagnosed through the characterization of the retinal blood vessels. The characterization can be extracted by using proper imaging techniques and data analysis methods. In case of eye examination, one of the important tasks is the retinal image segmentation.The paper presents a network and training strategy that relies on the data augmentation to use the available annotated samples more efficiently, to segment retinal blood vessels using a UNET convolutional neural network.

Dataset

We have used the Digital Retinal Images for Vessel Extraction (DRIVE) dataset for retinal vessel segmentation. It consists of a total of JPEG 40 color fundus images; including 7 abnormal pathology cases. Each image resolution is 584x565 pixels with eight bits per color channel (3 channels), resized to 512x512 for our model.

Guidelines to download, setup and use the dataset

The DRIVE dataset may be downloaded here as two files named training.zip and test.zip.

Please write the following commands on your terminal to extract the file in the proper directory.

  $ mkdir drive
  $ unzip </path/to/training.zip> -d </path/to/drive>
  $ unzip </path/to/test.zip> -d </path/to/drive>

The resulting directory structure should be:

/path/to/drive
    -> train
        -> image
            -> 21_training_0.tif
            -> 22_training_0.tif
               ...
        -> mask
            -> 21_training_0.gif
            -> 22_training_0.gif
    -> test
        -> image
            -> 01_test_0.tif
            -> 02_test_0.tif
               ...
        -> mask
            -> 01_test_0.gif
            -> 02_test_0.gif

Model Components

The UNET CNN architecture may be divided into the Encoder, Bottleneck and Decoder blocks, followed by a final segmentation output layer.

  • Encoder: There are 4 Encoder blocks, each consisting of a convolutional block followed by a Spatial Max Pooling layer.
  • Bottleneck: The Bottleneck consists of a single convolutional block.
  • Decoder: There are 4 Decoder blocks, each consisting of a deconvolution operation, followed by a convolutional block, along with skip connections.

Note: The convolutional block consists of 2 conv2d operations each followed by a BatchNorm2d, finally followed by a ReLU activation.

model_arch

Implementation Details

  • Image preprocessing included augmentations like HorizontalFlip, VerticalFlip, Rotate.
  • Dataloader object was created for both training and validation data
  • Training process was carried out for 50 epochs, using the Adam Optimizer with a Learning Rate 1e-4.
  • Validation was carried out using Dice Loss and Intersection over Union Loss.

Installation and Quick Start

To use the repo and run inferences, please follow the guidelines below

  • Cloning the Repository:

      $ git clone https://github.com/srijarkoroy/segRetino
    
  • Entering the directory:

      $ cd segRetino/
    
  • Setting up the Python Environment with dependencies:

      $ pip install -r requirements.txt
    
  • Running the file for inference:

      $ python3 test.py
    

Running the test file downloads the pretrained weights of the UNET Model that we have trained on the DRIVE Dataset. However if you want to re-train the model please mention the path to your dataset on you local machine after augmentations, inside the train.py file, as:

train_x = sorted(glob(<path/to/augmented/train/image/folder/>))
train_y = sorted(glob(<path/to/augmented/mask/image/folder/>))

valid_x = sorted(glob(<path/to/test/image/folder/>))
valid_y = sorted(glob(<path/to/test/mask/folder/>))

Once the path has been mentioned, the model may be trained by running the command:

  $ python3 train.py

Note: If images have not been augmented, please see the instructions for augmentation here.

The test file saves two images in the mentioned paths, a masked image showing only the blood vessels, and a blend image showing the blood vessels within the retina. If you don't want to save the blend image, consider running the following code snippet:

# Creating the SegRetino object initialized with the test image path
seg = SegRetino('<path/to/test/img>')

# Running inference
seg.inference(set_weight_dir = 'unet.pth', path = '<path/to/save/masked/image>', blend=False, blend_path = None)

Check out the standalone demo notebook and run segRetino inferences here.

Note: Is is advisable to use a GPU for running the inferences since performing segmentation on 512x512 images with a heavy UNET architecture is expensive.

Results from Implementation

Original Image Masked Image Blend Image

Contributors

Contribution

Contributions are always welcome! Please check out this doc for Contribution Guidelines.

Owner
Srijarko Roy
AI Enthusiast!
Srijarko Roy
Compare outputs between layers written in Tensorflow and layers written in Pytorch

Compare outputs of Wasserstein GANs between TensorFlow vs Pytorch This is our testing module for the implementation of improved WGAN in Pytorch Prereq

Hung Nguyen 72 Dec 20, 2022
[SIGMETRICS 2022] One Proxy Device Is Enough for Hardware-Aware Neural Architecture Search

One Proxy Device Is Enough for Hardware-Aware Neural Architecture Search paper | website One Proxy Device Is Enough for Hardware-Aware Neural Architec

10 Dec 16, 2022
LaBERT - A length-controllable and non-autoregressive image captioning model.

Length-Controllable Image Captioning (ECCV2020) This repo provides the implemetation of the paper Length-Controllable Image Captioning. Install conda

bearcatt 53 Nov 13, 2022
ResNEsts and DenseNEsts: Block-based DNN Models with Improved Representation Guarantees

ResNEsts and DenseNEsts: Block-based DNN Models with Improved Representation Guarantees This repository is the official implementation of the empirica

Kuan-Lin (Jason) Chen 2 Oct 02, 2022
Centroid-UNet is deep neural network model to detect centroids from satellite images.

Centroid UNet - Locating Object Centroids in Aerial/Serial Images Introduction Centroid-UNet is deep neural network model to detect centroids from Aer

GIC-AIT 19 Dec 08, 2022
Code for paper "Extract, Denoise and Enforce: Evaluating and Improving Concept Preservation for Text-to-Text Generation" EMNLP 2021

The repo provides the code for paper "Extract, Denoise and Enforce: Evaluating and Improving Concept Preservation for Text-to-Text Generation" EMNLP 2

Yuning Mao 18 May 24, 2022
Trading and Backtesting environment for training reinforcement learning agent or simple rule base algo.

TradingGym TradingGym is a toolkit for training and backtesting the reinforcement learning algorithms. This was inspired by OpenAI Gym and imitated th

Yvictor 1.1k Jan 02, 2023
Official PyTorch implementation of "Physics-aware Difference Graph Networks for Sparsely-Observed Dynamics".

Physics-aware Difference Graph Networks for Sparsely-Observed Dynamics This repository is the official PyTorch implementation of "Physics-aware Differ

USC-Melady 46 Nov 20, 2022
A clean and scalable template to kickstart your deep learning project 🚀 ⚡ 🔥

Lightning-Hydra-Template A clean and scalable template to kickstart your deep learning project 🚀 ⚡ 🔥 Click on Use this template to initialize new re

Hyunsoo Cho 1 Dec 20, 2021
Process JSON files for neural recording sessions using Medtronic's BrainSense Percept PC neurostimulator

percept_processing This code processes JSON files for streamed neural data using Medtronic's Percept PC neurostimulator with BrainSense Technology for

Maria Olaru 3 Jun 06, 2022
A forwarding MPI implementation that can use any other MPI implementation via an MPI ABI

MPItrampoline MPI wrapper library: MPI trampoline library: MPI integration tests: MPI is the de-facto standard for inter-node communication on HPC sys

Erik Schnetter 31 Dec 22, 2022
PyTorch Implementation of Spatially Consistent Representation Learning(SCRL)

Spatially Consistent Representation Learning (CVPR'21) Official PyTorch implementation of Spatially Consistent Representation Learning (SCRL). This re

Kakao Brain 102 Nov 03, 2022
CLIP-GEN: Language-Free Training of a Text-to-Image Generator with CLIP

CLIP-GEN [简体中文][English] 本项目在萤火二号集群上用 PyTorch 实现了论文 《CLIP-GEN: Language-Free Training of a Text-to-Image Generator with CLIP》。 CLIP-GEN 是一个 Language-F

75 Dec 29, 2022
The official PyTorch code for 'DER: Dynamically Expandable Representation for Class Incremental Learning' accepted by CVPR2021

DER.ClassIL.Pytorch This repo is the official implementation of DER: Dynamically Expandable Representation for Class Incremental Learning (CVPR 2021)

rhyssiyan 108 Jan 01, 2023
MARE - Multi-Attribute Relation Extraction

MARE - Multi-Attribute Relation Extraction Repository for the paper submission: #TODO: insert link, when available Environment Tested with Ubuntu 18.0

0 May 11, 2021
Very Deep Convolutional Networks for Large-Scale Image Recognition

pytorch-vgg Some scripts to convert the VGG-16 and VGG-19 models [1] from Caffe to PyTorch. The converted models can be used with the PyTorch model zo

Justin Johnson 217 Dec 05, 2022
Simple renderer for use with MuJoCo (>=2.1.2) Python Bindings.

Viewer for MuJoCo in Python Interactive renderer to use with the official Python bindings for MuJoCo. Starting with version 2.1.2, MuJoCo comes with n

Rohan P. Singh 62 Dec 30, 2022
Open-source codebase for EfficientZero, from "Mastering Atari Games with Limited Data" at NeurIPS 2021.

EfficientZero (NeurIPS 2021) Open-source codebase for EfficientZero, from "Mastering Atari Games with Limited Data" at NeurIPS 2021. Thank you for you

Weirui Ye 671 Jan 03, 2023
PASTRIE: A Corpus of Prepositions Annotated with Supersense Tags in Reddit International English

PASTRIE Official release of the corpus described in the paper: Michael Kranzlein, Emma Manning, Siyao Peng, Shira Wein, Aryaman Arora, and Nathan Schn

NERT @ Georgetown 4 Dec 02, 2021
This repository contains the implementation of the following paper: Cross-Descriptor Visual Localization and Mapping

Cross-Descriptor Visual Localization and Mapping This repository contains the implementation of the following paper: "Cross-Descriptor Visual Localiza

Mihai Dusmanu 81 Oct 06, 2022