Perception-aware multi-sensor fusion for 3D LiDAR semantic segmentation (ICCV 2021)

Related tags

Deep LearningPMF
Overview

Perception-Aware Multi-Sensor Fusion for 3D LiDAR Semantic Segmentation (ICCV 2021)

[中文|EN]

概述

本工作主要探索一种高效的多传感器(激光雷达和摄像头)融合点云语义分割方法。现有的多传感器融合方法主要将点云投影到图像上,获取对应的像素位置之后,将对应位置的图像信息投影回点云空间进行特征融合。但是,这种方式下并不能很好的利用图像丰富的视觉感知特征(例如形状、纹理等)。因此,我们尝试探索一种在RGB图像空间进行特征融合的方式,提出了一个基于视觉感知的多传感器融合方法(PMF)。详细内容可以查看我们的公开论文。

image-20211013141408045

主要实验结果

PWC

Leader board of [email protected]

image-20211013144333265

更多实验结果

我们在持续探索PMF框架的潜力,包括探索更大的模型、更好的ImageNet预训练模型、其他的数据集等。我们的实验结果证明了,PMF框架是易于拓展的,并且其性能可以通过使用更好的主干网络而实现提升。详细的说明可以查看文件

方法 数据集 mIoU (%)
PMF-ResNet34 SemanticKITTI Validation Set 63.9
PMF-ResNet34 nuScenes Validation Set 76.9
PMF-ResNet50 nuScenes Validation Set 79.4
PMF48-ResNet101 SensatUrban Test Set (ICCV2021 Competition) 66.2 (排名 5)

使用说明

注:代码中涉及到包括数据集在内的各种路径配置,请根据自己的实际路径进行修改

代码结构

|--- pc_processor/ 点云处理的Python包
	|--- checkpoint/ 生成实验结果目录
	|--- dataset/ 数据集处理
	|--- layers/ 常用网络层
	|--- loss/ 损失函数
	|--- metrices/ 模型性能指标函数
	|--- models/ 网络模型
	|--- postproc/ 后处理,主要是KNN
	|--- utils/ 其他函数
|--- tasks/ 实验任务
	|--- pmf/ PMF 训练源代码
	|--- pmf_eval_nuscenes/ PMF 模型在nuScenes评估代码
		|--- testset_eval/ 合并PMF以及salsanext结果并在nuScenes测试集上评估
		|--- xxx.py PMF 模型在nuScenes评估代码
	|--- pmf_eval_semantickitti/ PMF 在SemanticKITTI valset上评估代码
	|--- salsanext/ SalsaNext 训练代码,基于官方公开代码进行修改
	|--- salsanext_eval_nuscenes/ SalsaNext 在nuScenes 数据集上评估代码

模型训练

训练任务代码目录结构

|--- pmf/
	|--- config_server_kitti.yaml SemanticKITTI数据集训练的配置脚本
	|--- config_server_nus.yaml nuScenes数据集训练的配置脚本
	|--- main.py 主函数
	|--- trainer.py 训练代码
	|--- option.py 配置解析代码
	|--- run.sh 执行脚本,需要 chmod+x 赋予可执行权限

步骤

  1. 进入 tasks/pmf目录,修改配置文件 config_server_kitti.yaml中数据集路径 data_root 为实际数据集路径。如果有需要可以修改gpubatch_size等参数
  2. 修改 run.sh 确保 nproc_per_node 的数值与yaml文件中配置的gpu数量一致
  3. 运行如下指令执行训练脚本
./run.sh
# 或者 bash run.sh
  1. 执行成功之后会在 PMF/experiments/PMF-SemanticKitti路径下自动生成实验日志文件,目录结构如下:
|--- log_dataset_network_xxxx/
	|--- checkpoint/ 训练断点文件以及最佳模型参数
	|--- code/ 代码备份
	|--- log/ 控制台输出日志以及配置文件副本
	|--- events.out.tfevents.xxx tensorboard文件

控制台输出内容如下,其中最后的输出时间为实验预估时间

image-20211013152939956

模型推理

模型推理代码目录结构

|--- pmf_eval_semantickitti/ SemanticKITTI评估代码
	|--- config_server_kitti.yaml 配置脚本
	|--- infer.py 推理脚本
	|--- option.py 配置解析脚本

步骤

  1. 进入 tasks/pmf_eval_semantickitti目录,修改配置文件 config_server_kitti.yaml中数据集路径 data_root 为实际数据集路径。修改pretrained_path指向训练生成的日志文件夹目录。
  2. 运行如下命令执行脚本
python infer.py config_server_kitti.yaml
  1. 运行成功之后,会在训练模型所在目录下生成评估结果日志文件,文件夹目录结构如下:
|--- PMF/experiments/PMF-SemanticKitti/log_xxxx/ 训练结果路径
	|--- Eval_xxxxx/ 评估结果路径
		|--- code/ 代码备份
		|--- log/ 控制台日志文件
		|--- pred/ 用于提交评估的文件

引用

@InProceedings{Zhuang_2021_ICCV,
    author    = {Zhuang, Zhuangwei and Li, Rong and Jia, Kui and Wang, Qicheng and Li, Yuanqing and Tan, Mingkui},
    title     = {Perception-Aware Multi-Sensor Fusion for 3D LiDAR Semantic Segmentation},
    booktitle = {Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)},
    month     = {October},
    year      = {2021},
    pages     = {16280-16290}
}
Owner
ICE
Model compression; Object detection; Point cloud processing;
ICE
A PyTorch implementation of "DGC-Net: Dense Geometric Correspondence Network"

DGC-Net: Dense Geometric Correspondence Network This is a PyTorch implementation of our work "DGC-Net: Dense Geometric Correspondence Network" TL;DR A

191 Dec 16, 2022
Spatial Transformer Nets in TensorFlow/ TensorLayer

MOVED TO HERE Spatial Transformer Networks Spatial Transformer Networks (STN) is a dynamic mechanism that produces transformations of input images (or

Hao 36 Nov 23, 2022
Caffe models in TensorFlow

Caffe to TensorFlow Convert Caffe models to TensorFlow. Usage Run convert.py to convert an existing Caffe model to TensorFlow. Make sure you're using

Saumitro Dasgupta 2.8k Dec 31, 2022
This is the official implementation code repository of Underwater Light Field Retention : Neural Rendering for Underwater Imaging (Accepted by CVPR Workshop2022 NTIRE)

Underwater Light Field Retention : Neural Rendering for Underwater Imaging (UWNR) (Accepted by CVPR Workshop2022 NTIRE) Authors: Tian Ye†, Sixiang Che

jmucsx 17 Dec 14, 2022
Code for the paper "Curriculum Dropout", ICCV 2017

Curriculum Dropout Dropout is a very effective way of regularizing neural networks. Stochastically "dropping out" units with a certain probability dis

Pietro Morerio 21 Jan 02, 2022
Nonnegative spatial factorization for multivariate count data

Nonnegative spatial factorization for multivariate count data This repository contains supporting code to facilitate reproducible analysis. For detail

Will Townes 24 Dec 19, 2022
A curated list of awesome projects and resources related fastai

A curated list of awesome projects and resources related fastai

Tanishq Abraham 138 Dec 22, 2022
[SIGGRAPH 2020] Attribute2Font: Creating Fonts You Want From Attributes

Attr2Font Introduction This is the official PyTorch implementation of the Attribute2Font: Creating Fonts You Want From Attributes. Paper: arXiv | Rese

Yue Gao 200 Dec 15, 2022
Download and preprocess popular sequential recommendation datasets

Sequential Recommendation Datasets This repository collects some commonly used sequential recommendation datasets in recent research papers and provid

125 Dec 06, 2022
Instant-Teaching: An End-to-End Semi-Supervised Object Detection Framework

This repo is the official implementation of "Instant-Teaching: An End-to-End Semi-Supervised Object Detection Framework". @inproceedings{zhou2021insta

34 Dec 31, 2022
本项目是一个带有前端界面的垃圾分类项目,加载了训练好的模型参数,模型为efficientnetb4,暂时为40分类问题。

说明 本项目是一个带有前端界面的垃圾分类项目,加载了训练好的模型参数,模型为efficientnetb4,暂时为40分类问题。 python依赖 tf2.3 、cv2、numpy、pyqt5 pyqt5安装 pip install PyQt5 pip install PyQt5-tools 使用 程

4 May 04, 2022
Tracking code for the winner of track 1 in the MMP-Tracking Challenge at ICCV 2021 Workshop.

Tracking Code for the winner of track1 in MMP-Trakcing challenge This repository contains our tracking code for the Multi-camera Multiple People Track

DamoCV 29 Nov 13, 2022
Churn-Prediction-Project - In this project, a churn prediction model is developed for a private bank as a term project for Data Mining class.

Churn-Prediction-Project In this project, a churn prediction model is developed for a private bank as a term project for Data Mining class. Project in

1 Jan 03, 2022
HomeAssitant custom integration for dyson

HomeAssistant Custom Integration for Dyson This custom integration is still under development. This is a HA custom integration for dyson. There are se

Xiaonan Shen 232 Dec 31, 2022
Code for ICML 2021 paper: How could Neural Networks understand Programs?

OSCAR This repository contains the source code of our ICML 2021 paper How could Neural Networks understand Programs?. Environment Run following comman

Dinglan Peng 115 Dec 17, 2022
Dense Passage Retriever - is a set of tools and models for open domain Q&A task.

Dense Passage Retrieval Dense Passage Retrieval (DPR) - is a set of tools and models for state-of-the-art open-domain Q&A research. It is based on the

Meta Research 1.1k Jan 03, 2023
Roger Labbe 13k Dec 29, 2022
Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. CVPR 2018

Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning Tensorflow code and models for the paper: Large Scale Fine-Grained Categ

Yin Cui 187 Oct 01, 2022
Multi-task Self-supervised Object Detection via Recycling of Bounding Box Annotations (CVPR, 2019)

Multi-task Self-supervised Object Detection via Recycling of Bounding Box Annotations (CVPR 2019) To make better use of given limited labels, we propo

126 Sep 13, 2022
Computer Vision Paper Reviews with Key Summary of paper, End to End Code Practice and Jupyter Notebook converted papers

Computer-Vision-Paper-Reviews Computer Vision Paper Reviews with Key Summary along Papers & Codes. Jonathan Choi 2021 The repository provides 100+ Pap

Jonathan Choi 2 Mar 17, 2022