PyTorch Implementation of PIXOR: Real-time 3D Object Detection from Point Clouds

Overview

PIXOR: Real-time 3D Object Detection from Point Clouds

This is a custom implementation of the paper from Uber ATG using PyTorch 1.0. It represents the driving scene using lidar data in the Birds' Eye View (BEV) and uses a single stage object detector to predict the poses of road objects with respect to the car

PIXOR: Real-time 3D Object Detection from Point Clouds

alt text

Highlights

  • PyTorch 1.0 Reproduced and trained from scratch using the KITTI dataset
  • Fast Custom LiDAR preprocessing using C++
  • Multi-GPU Training and Pytorch MultiProcessing package to speed up non-maximum suppression during evaluation
  • Tensorboard Visualize trainig progress using Tensorboard
  • KITTI and ROSBAG Demo Scripts that supports running inferences directly on raw KITTI data or custom rosbags.

Install

Dependencies:

  • Python 3.5(3.6)
  • Pytorch (Follow Official Installation Guideline)
  • Tensorflow (see their website)
  • Numpy, MatplotLib, OpenCV3
  • PyKitti (for running on KITTI raw dataset)
  • gcc
pip install shapely numpy matplotlib
git clone https://github.com/philip-huang/PIXOR
cd PIXOR/srcs/preprocess
make

(Optional) If you want to run this project on a custom rosbag containing Velodyne HDL64 scans the system must be Linux with ROS kinetic installed. You also need to install the velodyne driver into the velodyne_ws folder.

Set up the velodyne workspace by running ./velodyne_setup.bash and press Ctrl-C as necessary.

Demo

A helper class is provided in run_kitti.py to simplify writing inference pipelines using pre-trained models. Here is how we would do it. Run this from the src folder (suppose I have already downloaded my KITTI raw data and extracted to somewhere)

from run_kitti import *

def make_kitti_video():
     
    basedir = '/mnt/ssd2/od/KITTI/raw'
    date = '2011_09_26'
    drive = '0035'
    dataset = pykitti.raw(basedir, date, drive)
   
    videoname = "detection_{}_{}.avi".format(date, drive)
    save_path = os.path.join(basedir, date, "{}_drive_{}_sync".format(date, drive), videoname)    
    run(dataset, save_path)

make_kitti_video()

Training and Evaluation

Our Training Result (as of Dec 2018) alt text

All configuration (hyperparameters, GPUs, etc) should be put in a config.json file and save to the directory srcs/experiments/$exp_name$ To train

python srcs/main.py train (--name=$exp_name$)

To evaluate an experiment

python srcs/main.py val (--name=$exp_name$)

To display a sample result

python srcs/main.py test --name=$exp_name$

To view tensorboard

tensorboard --logdir=srcs/logs/$exp_name$

TODO

  • Improve training accuracy on KITTI dataset
  • Data augmentation
  • Generalization gap on custom driving sequences
  • Data Collection
  • Improve model (possible idea: use map as a prior)

Credits

Project Contributors

  • Philip Huang
  • Allan Liu

Paper Citation below



@inproceedings{yang2018pixor,
  title={PIXOR: Real-Time 3D Object Detection From Point Clouds},
  author={Yang, Bin and Luo, Wenjie and Urtasun, Raquel}
}

We would like to thank aUToronto for genersouly sponsoring GPUs for this project

Owner
Philip Huang
University of Toronto | Engineering Science | Machine Intelligence
Philip Huang
IhoneyBakFileScan Modify - 批量网站备份文件扫描器,增加文件规则,优化内存占用

ihoneyBakFileScan_Modify 批量网站备份文件泄露扫描工具 2022.2.8 添加、修改内容 增加备份文件fuzz规则 修改备份文件大小判断

VMsec 220 Jan 05, 2023
Generate fine-tuning samples & Fine-tuning the model & Generate samples by transferring Note On

UPMT Generate fine-tuning samples & Fine-tuning the model & Generate samples by transferring Note On See main.py as an example: from model import PopM

7 Sep 01, 2022
The official code for PRIMER: Pyramid-based Masked Sentence Pre-training for Multi-document Summarization

PRIMER The official code for PRIMER: Pyramid-based Masked Sentence Pre-training for Multi-document Summarization. PRIMER is a pre-trained model for mu

AI2 114 Jan 06, 2023
This repository contains the source code for the paper "DONeRF: Towards Real-Time Rendering of Compact Neural Radiance Fields using Depth Oracle Networks",

DONeRF: Towards Real-Time Rendering of Compact Neural Radiance Fields using Depth Oracle Networks Project Page | Video | Presentation | Paper | Data L

Facebook Research 281 Dec 22, 2022
Out-of-Domain Human Mesh Reconstruction via Dynamic Bilevel Online Adaptation

DynaBOA Code repositoty for the paper: Out-of-Domain Human Mesh Reconstruction via Dynamic Bilevel Online Adaptation Shanyan Guan, Jingwei Xu, Michell

198 Dec 29, 2022
This is a Tensorflow implementation of Learning to See in the Dark in CVPR 2018

Learning-to-See-in-the-Dark This is a Tensorflow implementation of Learning to See in the Dark in CVPR 2018, by Chen Chen, Qifeng Chen, Jia Xu, and Vl

5.3k Jan 01, 2023
A generalist algorithm for cell and nucleus segmentation.

Cellpose | A generalist algorithm for cell and nucleus segmentation. Cellpose was written by Carsen Stringer and Marius Pachitariu. To learn about Cel

MouseLand 733 Dec 29, 2022
Machine Unlearning with SISA

Machine Unlearning with SISA Lucas Bourtoule, Varun Chandrasekaran, Christopher Choquette-Choo, Hengrui Jia, Adelin Travers, Baiwu Zhang, David Lie, N

CleverHans Lab 70 Jan 01, 2023
Efficient 3D Backbone Network for Temporal Modeling

VoV3D is an efficient and effective 3D backbone network for temporal modeling implemented on top of PySlowFast. Diverse Temporal Aggregation and

102 Dec 06, 2022
PyTorch implementation of the NIPS-17 paper "Poincaré Embeddings for Learning Hierarchical Representations"

Poincaré Embeddings for Learning Hierarchical Representations PyTorch implementation of Poincaré Embeddings for Learning Hierarchical Representations

Facebook Research 1.6k Dec 25, 2022
Out-of-distribution detection using the pNML regret. NeurIPS2021

OOD Detection Load conda environment conda env create -f environment.yml or install requirements: while read requirement; do conda install --yes $requ

Koby Bibas 23 Dec 02, 2022
Complete system for facial identity system

Complete system for facial identity system. Include one-shot model, database operation, features visualization, monitoring

4 May 02, 2022
Data, model training, and evaluation code for "PubTables-1M: Towards a universal dataset and metrics for training and evaluating table extraction models".

PubTables-1M This repository contains training and evaluation code for the paper "PubTables-1M: Towards a universal dataset and metrics for training a

Microsoft 365 Jan 04, 2023
[CVPR-2021] UnrealPerson: An adaptive pipeline for costless person re-identification

UnrealPerson: An Adaptive Pipeline for Costless Person Re-identification In our paper (arxiv), we propose a novel pipeline, UnrealPerson, that decreas

ZhangTianyu 70 Oct 10, 2022
AutoVideo: An Automated Video Action Recognition System

AutoVideo is a system for automated video analysis. It is developed based on D3M infrastructure, which describes machine learning with generic pipeline languages. Currently, it focuses on video actio

Data Analytics Lab at Texas A&M University 267 Dec 17, 2022
RobustART: Benchmarking Robustness on Architecture Design and Training Techniques

The first comprehensive Robustness investigation benchmark on large-scale dataset ImageNet regarding ARchitecture design and Training techniques towards diverse noises.

132 Dec 23, 2022
P-Tuning v2: Prompt Tuning Can Be Comparable to Finetuning Universally Across Scales and Tasks

P-tuning v2 P-Tuning v2: Prompt Tuning Can Be Comparable to Finetuning Universally Across Scales and Tasks An optimized prompt tuning strategy for sma

THUDM 540 Dec 30, 2022
Semantic graph parser based on Categorial grammars

Lambekseq "Everyone who failed Greek or Latin hates it." This package is for proving theorems in Categorial grammars (CG) and constructing semantic gr

10 Aug 19, 2022
Learning to Reconstruct 3D Non-Cuboid Room Layout from a Single RGB Image

NonCuboidRoom Paper Learning to Reconstruct 3D Non-Cuboid Room Layout from a Single RGB Image Cheng Yang*, Jia Zheng*, Xili Dai, Rui Tang, Yi Ma, Xiao

67 Dec 15, 2022
Python library for science observations from the James Webb Space Telescope

JWST Calibration Pipeline JWST requires Python 3.7 or above and a C compiler for dependencies. Linux and MacOS platforms are tested and supported. Win

Space Telescope Science Institute 386 Dec 30, 2022