PyTorch Implementation of PIXOR: Real-time 3D Object Detection from Point Clouds

Overview

PIXOR: Real-time 3D Object Detection from Point Clouds

This is a custom implementation of the paper from Uber ATG using PyTorch 1.0. It represents the driving scene using lidar data in the Birds' Eye View (BEV) and uses a single stage object detector to predict the poses of road objects with respect to the car

PIXOR: Real-time 3D Object Detection from Point Clouds

alt text

Highlights

  • PyTorch 1.0 Reproduced and trained from scratch using the KITTI dataset
  • Fast Custom LiDAR preprocessing using C++
  • Multi-GPU Training and Pytorch MultiProcessing package to speed up non-maximum suppression during evaluation
  • Tensorboard Visualize trainig progress using Tensorboard
  • KITTI and ROSBAG Demo Scripts that supports running inferences directly on raw KITTI data or custom rosbags.

Install

Dependencies:

  • Python 3.5(3.6)
  • Pytorch (Follow Official Installation Guideline)
  • Tensorflow (see their website)
  • Numpy, MatplotLib, OpenCV3
  • PyKitti (for running on KITTI raw dataset)
  • gcc
pip install shapely numpy matplotlib
git clone https://github.com/philip-huang/PIXOR
cd PIXOR/srcs/preprocess
make

(Optional) If you want to run this project on a custom rosbag containing Velodyne HDL64 scans the system must be Linux with ROS kinetic installed. You also need to install the velodyne driver into the velodyne_ws folder.

Set up the velodyne workspace by running ./velodyne_setup.bash and press Ctrl-C as necessary.

Demo

A helper class is provided in run_kitti.py to simplify writing inference pipelines using pre-trained models. Here is how we would do it. Run this from the src folder (suppose I have already downloaded my KITTI raw data and extracted to somewhere)

from run_kitti import *

def make_kitti_video():
     
    basedir = '/mnt/ssd2/od/KITTI/raw'
    date = '2011_09_26'
    drive = '0035'
    dataset = pykitti.raw(basedir, date, drive)
   
    videoname = "detection_{}_{}.avi".format(date, drive)
    save_path = os.path.join(basedir, date, "{}_drive_{}_sync".format(date, drive), videoname)    
    run(dataset, save_path)

make_kitti_video()

Training and Evaluation

Our Training Result (as of Dec 2018) alt text

All configuration (hyperparameters, GPUs, etc) should be put in a config.json file and save to the directory srcs/experiments/$exp_name$ To train

python srcs/main.py train (--name=$exp_name$)

To evaluate an experiment

python srcs/main.py val (--name=$exp_name$)

To display a sample result

python srcs/main.py test --name=$exp_name$

To view tensorboard

tensorboard --logdir=srcs/logs/$exp_name$

TODO

  • Improve training accuracy on KITTI dataset
  • Data augmentation
  • Generalization gap on custom driving sequences
  • Data Collection
  • Improve model (possible idea: use map as a prior)

Credits

Project Contributors

  • Philip Huang
  • Allan Liu

Paper Citation below



@inproceedings{yang2018pixor,
  title={PIXOR: Real-Time 3D Object Detection From Point Clouds},
  author={Yang, Bin and Luo, Wenjie and Urtasun, Raquel}
}

We would like to thank aUToronto for genersouly sponsoring GPUs for this project

Owner
Philip Huang
University of Toronto | Engineering Science | Machine Intelligence
Philip Huang
This script runs neural style transfer against the provided content image.

Neural Style Transfer Content Style Output Description: This script runs neural style transfer against the provided content image. The content image m

Martynas Subonis 0 Nov 25, 2021
Basics of 2D and 3D Human Pose Estimation.

Human Pose Estimation 101 If you want a slightly more rigorous tutorial and understand the basics of Human Pose Estimation and how the field has evolv

Sudharshan Chandra Babu 293 Dec 14, 2022
Affine / perspective transformation in Pose Estimation with Tensorflow 2

Pose Transformation Affine / Perspective transformation in Pose Estimation with Tensorflow 2 Introduction 이 repo는 pose estimation을 연구하고 개발하는 데 도움이 되기

Kim Junho 1 Dec 22, 2021
PyTorch implementation of Decoupling Value and Policy for Generalization in Reinforcement Learning

PyTorch implementation of Decoupling Value and Policy for Generalization in Reinforcement Learning

48 Dec 08, 2022
This code uses generative adversarial networks to generate diverse task allocation plans for Multi-agent teams.

Mutli-agent task allocation This code uses generative adversarial networks to generate diverse task allocation plans for Multi-agent teams. To change

Biorobotics Lab 5 Oct 12, 2022
Learning to Reconstruct 3D Non-Cuboid Room Layout from a Single RGB Image

NonCuboidRoom Paper Learning to Reconstruct 3D Non-Cuboid Room Layout from a Single RGB Image Cheng Yang*, Jia Zheng*, Xili Dai, Rui Tang, Yi Ma, Xiao

67 Dec 15, 2022
A user-friendly research and development tool built to standardize RL competency assessment for custom agents and environments.

Built with ❤️ by Sam Showalter Contents Overview Installation Dependencies Usage Scripts Standard Execution Environment Development Environment Benchm

SRI-AIC 1 Nov 18, 2021
This repository contains the implementation of the paper: "Towards Frequency-Based Explanation for Robust CNN"

RobustFreqCNN About This repository contains the implementation of the paper "Towards Frequency-Based Explanation for Robust CNN" arxiv. It primarly d

Sarosij Bose 2 Jan 23, 2022
K-FACE Analysis Project on Pytorch

Installation Setup with Conda # create a new environment conda create --name insightKface python=3.7 # or over conda activate insightKface #install t

Jung Jun Uk 7 Nov 10, 2022
Joint-task Self-supervised Learning for Temporal Correspondence (NeurIPS 2019)

Joint-task Self-supervised Learning for Temporal Correspondence Project | Paper Overview Joint-task Self-supervised Learning for Temporal Corresponden

Sifei Liu 167 Dec 14, 2022
The Incredible PyTorch: a curated list of tutorials, papers, projects, communities and more relating to PyTorch.

This is a curated list of tutorials, projects, libraries, videos, papers, books and anything related to the incredible PyTorch. Feel free to make a pu

Ritchie Ng 9.2k Jan 02, 2023
Semantic Segmentation in Pytorch. Network include: FCN、FCN_ResNet、SegNet、UNet、BiSeNet、BiSeNetV2、PSPNet、DeepLabv3_plus、 HRNet、DDRNet

🚀 If it helps you, click a star! ⭐ Update log 2020.12.10 Project structure adjustment, the previous code has been deleted, the adjustment will be re-

Deeachain 269 Jan 04, 2023
Transfer style api - An API to use with Tranfer Style App, where you can use two image and transfer the style

Transfer Style API It's an API to use with Tranfer Style App, where you can use

Brian Alejandro 1 Feb 13, 2022
Replication Package for AequeVox:Automated Fariness Testing for Speech Recognition Systems

AequeVox Replication Package for AequeVox:Automated Fariness Testing for Speech Recognition Systems README under development. Python Packages Required

Sai Sathiesh 2 Aug 28, 2022
Generating Digital Painting Lighting Effects via RGB-space Geometry (SIGGRAPH2020/TOG2020)

Project PaintingLight PaintingLight is a project conducted by the Style2Paints team, aimed at finding a method to manipulate the illumination in digit

651 Dec 29, 2022
Official Implementation of SWAGAN: A Style-based Wavelet-driven Generative Model

Official Implementation of SWAGAN: A Style-based Wavelet-driven Generative Model SWAGAN: A Style-based Wavelet-driven Generative Model Rinon Gal, Dana

55 Dec 06, 2022
An implementation of the AlphaZero algorithm for Gomoku (also called Gobang or Five in a Row)

AlphaZero-Gomoku This is an implementation of the AlphaZero algorithm for playing the simple board game Gomoku (also called Gobang or Five in a Row) f

Junxiao Song 2.8k Dec 26, 2022
Código de um painel de auto atendimento feito em Python.

Painel de Auto-Atendimento O intuito desse projeto era fazer em Python um programa que simulasse um painel de auto atendimento, no maior estilo Mac Do

Calebe Alves Evangelista 2 Nov 09, 2022
Starter kit for getting started in the Music Demixing Challenge.

Music Demixing Challenge - Starter Kit 👉 Challenge page This repository is the Music Demixing Challenge Submission template and Starter kit! Clone th

AIcrowd 106 Dec 20, 2022
A simple, unofficial implementation of MAE using pytorch-lightning

Masked Autoencoders in PyTorch A simple, unofficial implementation of MAE (Masked Autoencoders are Scalable Vision Learners) using pytorch-lightning.

Connor Anderson 20 Dec 03, 2022