This is Official implementation for "Pose-guided Feature Disentangling for Occluded Person Re-Identification Based on Transformer" in AAAI2022

Related tags

Deep LearningPFD_Net
Overview

PFD:Pose-guided Feature Disentangling for Occluded Person Re-identification based on Transformer

Python >=3.6 PyTorch >=1.6

This repo is the official implementation of "Pose-guided Feature Disentangling for Occluded Person Re-identification based on Transformer(PFD), Tao Wang, Hong Liu, Pinghao Song, Tianyu Guo& Wei Shi" in PyTorch.

Pipeline

framework

Dependencies

  • timm==0.3.2

  • torch==1.6.0

  • numpy==1.20.2

  • yacs==0.1.8

  • opencv_python==4.5.2.54

  • torchvision==0.7.0

  • Pillow==8.4.0

Installation

pip install -r requirements.txt

If you find some packages are missing, please install them manually.

Prepare Datasets

mkdir data

Please download the dataset, and then rename and unzip them under the data

data
|--market1501
|
|--Occluded_Duke
|
|--Occluded_REID
|
|--MSMT17
|
|--dukemtmcreid

Prepare ViT Pre-trained and HRNet Pre-trained Models

mkdir data

The ViT Pre-trained model can be found in ViT_Base, The HRNet Pre-trained model can be found in HRNet, please download it and put in the './weights' dictory.

Training

We use One GeForce GTX 1080Ti GPU for Training Before train the model, please modify the parameters in config file, please refer to Arguments in TransReID

python occ_train.py --config_file {config_file path}
#example
python occ_train.py --config_file 'configs/OCC_Duke/skeleton_pfd.yml'

Test the model

First download the Occluded-Duke model:Occluded-Duke

To test on pretrained model on Occ-Duke: Modify the pre-trained model path (PRETRAIN_PATH:ViT_Base, POSE_WEIGHT:HRNet, WEIGHT:Occluded-Duke) in yml, and then run:

## OccDuke for example
python test.py --config_file 'configs/OCC_Duke/skeleton_pfd.yml'

Occluded-Duke Results

Model Image Size Rank-1 mAP
HOReID 256*128 55.1 43.8
PAT 256*128 64.5 53.6
TransReID 256*128 64.2 55.7
PFD 256*128 67.7 60.1
TransReID* 256*128 66.4 59.2
PFD* 256*128 69.5 61.8

$*$means the encoder is with a small step sliding-window setting

Occluded-REID Results

Model Image Size Rank-1 mAP
HOReID 256*128 80.3 70.2
PAT 256*128 81.6 72.1
PFD 256*128 79.8 81.3

Market-1501 Results

Model Image Size Rank-1 mAP
HOReID 256*128 80.3 70.2
PAT 256*128 95.4 88.0
TransReID 256*128 95.4 88.0
PFD 256*128 95.5 89.6

Citation

If you find our work useful in your research, please consider citing this paper! (preprint version will be available soon)

@inproceedings{wang2022pfd,
  Title= {Pose-guided Feature Disentangling for Occluded Person Re-identification based on Transformer},
  Author= {Tao Wang, Hong Liu, Pinhao Song, Tianyu Guo and Wei Shi},
  Booktitle= {AAAI},
  Year= {2022}
}

Acknowledgement

Our code is extended from the following repositories. We thank the authors for releasing the codes.

License

This project is licensed under the terms of the MIT license.

You might also like...
Official pytorch implementation of paper "Inception Convolution with Efficient Dilation Search" (CVPR 2021 Oral).

IC-Conv This repository is an official implementation of the paper Inception Convolution with Efficient Dilation Search. Getting Started Download Imag

Official PyTorch Implementation of Unsupervised Learning of Scene Flow Estimation Fusing with Local Rigidity
Official PyTorch Implementation of Unsupervised Learning of Scene Flow Estimation Fusing with Local Rigidity

UnRigidFlow This is the official PyTorch implementation of UnRigidFlow (IJCAI2019). Here are two sample results (~10MB gif for each) of our unsupervis

Official implementation of our paper
Official implementation of our paper "LLA: Loss-aware Label Assignment for Dense Pedestrian Detection" in Pytorch.

LLA: Loss-aware Label Assignment for Dense Pedestrian Detection This project provides an implementation for "LLA: Loss-aware Label Assignment for Dens

Official implementation of Self-supervised Graph Attention Networks (SuperGAT), ICLR 2021.

SuperGAT Official implementation of Self-supervised Graph Attention Networks (SuperGAT). This model is presented at How to Find Your Friendly Neighbor

An official implementation of
An official implementation of "SFNet: Learning Object-aware Semantic Correspondence" (CVPR 2019, TPAMI 2020) in PyTorch.

PyTorch implementation of SFNet This is the implementation of the paper "SFNet: Learning Object-aware Semantic Correspondence". For more information,

This project is the official implementation of our accepted ICLR 2021 paper BiPointNet: Binary Neural Network for Point Clouds.
This project is the official implementation of our accepted ICLR 2021 paper BiPointNet: Binary Neural Network for Point Clouds.

BiPointNet: Binary Neural Network for Point Clouds Created by Haotong Qin, Zhongang Cai, Mingyuan Zhang, Yifu Ding, Haiyu Zhao, Shuai Yi, Xianglong Li

Official code implementation for
Official code implementation for "Personalized Federated Learning using Hypernetworks"

Personalized Federated Learning using Hypernetworks This is an official implementation of Personalized Federated Learning using Hypernetworks paper. [

StyleGAN2 - Official TensorFlow Implementation
StyleGAN2 - Official TensorFlow Implementation

StyleGAN2 - Official TensorFlow Implementation

 Old Photo Restoration (Official PyTorch Implementation)
Old Photo Restoration (Official PyTorch Implementation)

Bringing Old Photo Back to Life (CVPR 2020 oral)

Comments
  • 精度达不到论文里面的数据

    精度达不到论文里面的数据

    作者您好,我在1501上测试了一下 就改了 /home/zqx_3090/PersonReID/PersonReID2/PFD_Net-master/configs/Market1501/skeleton_pfd.yml 这个文件,里面的参数并没有改动 改了权重的路径,和文件夹的路径 其他都没变,如何训练300轮次后 我选择最高300轮的 /home/zqx_3090/PersonReID/PersonReID2/PFD_Net-master/logs/Market/pfd_net/skeleton_transformer_300.pth 去测试 结果是 : 2021-12-28 18:23:39,417 PFDreid.test INFO: Validation Results 2021-12-28 18:23:39,417 PFDreid.test INFO: mAP: 88.2% 2021-12-28 18:23:39,418 PFDreid.test INFO: CMC curve, Rank-1 :94.8% 2021-12-28 18:23:39,418 PFDreid.test INFO: CMC curve, Rank-5 :98.3% 2021-12-28 18:23:39,418 PFDreid.test INFO: CMC curve, Rank-10 :99.0% 达不到论文的95.5 甚至不如TransReID的精度 ??? 您能看看是为什么嘛?

    MODEL: PRETRAIN_CHOICE: 'imagenet' PRETRAIN_PATH: '/home/zqx_3090/PersonReID/PersonReID2/PFD_Net-master/weights/jx_vit_base_p16_224-80ecf9dd.pth' METRIC_LOSS_TYPE: 'triplet' IF_LABELSMOOTH: 'on' IF_WITH_CENTER: 'no' NAME: 'skeleton_transformer' NO_MARGIN: True DEVICE_ID: ('2') TRANSFORMER_TYPE: 'vit_base_patch16_224_TransReID' STRIDE_SIZE: [16, 16]

    SIE_CAMERA: True SIE_COE: 3.0 JPM: True RE_ARRANGE: True NUM_HEAD: 8 DECODER_DROP_RATE: 0.1 DROP_FIRST: False NUM_DECODER_LAYER: 6 QUERY_NUM: 17 POSE_WEIGHT: '/home/zqx_3090/PersonReID/PersonReID2/PFD_Net-master/weights/pose_hrnet_w48_384x288.pth' SKT_THRES: 0.2

    INPUT: SIZE_TRAIN: [256, 128] SIZE_TEST: [256, 128] PROB: 0.5 # random horizontal flip RE_PROB: 0.5 # random erasing PADDING: 10 PIXEL_MEAN: [0.5, 0.5, 0.5] PIXEL_STD: [0.5, 0.5, 0.5]

    DATASETS: NAMES: ('market1501') ROOT_DIR: ('/home/zqx_3090/PersonReID/PersonReID2/PFD_Net-master/data/')

    DATALOADER: SAMPLER: 'softmax_triplet' NUM_INSTANCE: 4 NUM_WORKERS: 8

    SOLVER: OPTIMIZER_NAME: 'SGD' MAX_EPOCHS: 300 BASE_LR: 0.008 IMS_PER_BATCH: 64 WARMUP_METHOD: 'linear' LARGE_FC_LR: False CHECKPOINT_PERIOD: 60 LOG_PERIOD: 50 EVAL_PERIOD: 30 WEIGHT_DECAY: 1e-4 WEIGHT_DECAY_BIAS: 1e-4 BIAS_LR_FACTOR: 2

    TEST: EVAL: True IMS_PER_BATCH: 256 RE_RANKING: False WEIGHT: "/home/zqx_3090/PersonReID/PersonReID2/PFD_Net-master/logs/Market/pfd_net/skeleton_transformer_300.pth" #put your own pth NECK_FEAT: 'before' FEAT_NORM: 'yes'

    OUTPUT_DIR: 'logs/Market/pfd_net'

    opened by zqx951102 3
  • 使用您的Occluded-Duke的预训练模型达不到文中的结果

    使用您的Occluded-Duke的预训练模型达不到文中的结果

    作者您好: 感谢你做出如此优秀的工作,我按照reademe的要求在使用您的Occluded-Duke的预训练模型时,发现达不到文中所说的结果,下图是我测试的结果: image 跟论文中的结果大约相差2%,我使用的时pytorch1.7.1, cuda10.2, python3.7.13;所以我想知道这是什么原因造成的呢? 期待您的回复。

    opened by changshuowang 2
  • There is no Occlude-REID data loader

    There is no Occlude-REID data loader

    Good work! I respect your contributions!

    I want to testing Occluded-REID dataset in your code, but there is no loader. In your code, dataset.make_dataloader.py, line 14 "from .occ_reid import Occluded_REID"

    Would you share this code?

    thank you

    opened by intlabSeJun 4
Releases(V1.0.0)
Owner
Tao Wang
Tao Wang
Pytorch Implementation of the paper "Cross-domain Correspondence Learning for Exemplar-based Image Translation"

CoCosNet Pytorch Implementation of the paper "Cross-domain Correspondence Learning for Exemplar-based Image Translation" (CVPR 2020 oral). Update: 202

Lingbo Yang 38 Sep 22, 2021
Syntax-Aware Action Targeting for Video Captioning

Syntax-Aware Action Targeting for Video Captioning Code for SAAT from "Syntax-Aware Action Targeting for Video Captioning" (Accepted to CVPR 2020). Th

59 Oct 13, 2022
How will electric vehicles affect traffic congestion and energy consumption: an integrated modelling approach

EV-charging-impact This repository contains the code that has been used for the Queue modelling for the paper "How will electric vehicles affect traff

7 Nov 30, 2022
DRIFT is a tool for Diachronic Analysis of Scientific Literature.

About DRIFT is a tool for Diachronic Analysis of Scientific Literature. The application offers user-friendly and customizable utilities for two modes:

Rajaswa Patil 108 Dec 12, 2022
Official implementation of the paper WAV2CLIP: LEARNING ROBUST AUDIO REPRESENTATIONS FROM CLIP

Wav2CLIP 🚧 WIP 🚧 Official implementation of the paper WAV2CLIP: LEARNING ROBUST AUDIO REPRESENTATIONS FROM CLIP 📄 🔗 Ho-Hsiang Wu, Prem Seetharaman

Descript 240 Dec 13, 2022
pytorch implementation for PointNet

PointNet.pytorch This repo is implementation for PointNet in pytorch. The model is in pointnet/model.py. It is teste

Fei Xia 1.7k Dec 30, 2022
Explaining Hyperparameter Optimization via PDPs

Explaining Hyperparameter Optimization via PDPs This repository gives access to an implementation of the methods presented in the paper submission “Ex

2 Nov 16, 2022
Real-time face detection and emotion/gender classification using fer2013/imdb datasets with a keras CNN model and openCV.

Real-time face detection and emotion/gender classification using fer2013/imdb datasets with a keras CNN model and openCV.

Octavio Arriaga 5.3k Dec 30, 2022
Speeding-Up Back-Propagation in DNN: Approximate Outer Product with Memory

Approximate Outer Product Gradient Descent with Memory Code for the numerical experiment of the paper Speeding-Up Back-Propagation in DNN: Approximate

2 Mar 02, 2022
“英特尔创新大师杯”深度学习挑战赛 赛道3:CCKS2021中文NLP地址相关性任务

基于 bert4keras 的一个baseline 不作任何 数据trick 单模 线上 最高可到 0.7891 # 基础 版 train.py 0.7769 # transformer 各层 cls concat 明神的trick https://xv44586.git

孙永松 7 Dec 28, 2021
Solving SMPL/MANO parameters from keypoint coordinates.

Minimal-IK A simple and naive inverse kinematics solver for MANO hand model, SMPL body model, and SMPL-H body+hand model. Briefly, given joint coordin

Yuxiao Zhou 305 Dec 30, 2022
Pythonic particle-based (super-droplet) warm-rain/aqueous-chemistry cloud microphysics package with box, parcel & 1D/2D prescribed-flow examples in Python, Julia and Matlab

PySDM PySDM is a package for simulating the dynamics of population of particles. It is intended to serve as a building block for simulation systems mo

Atmospheric Cloud Simulation Group @ Jagiellonian University 32 Oct 18, 2022
CS583: Deep Learning

CS583: Deep Learning

Shusen Wang 2.6k Dec 30, 2022
A best practice for tensorflow project template architecture.

A best practice for tensorflow project template architecture.

Mahmoud Gamal Salem 3.6k Dec 22, 2022
Repository for MDPGT

MD-PGT Repository for implementing and reproducing the results for the paper MDPGT: Momentum-based Decentralized Policy Gradient Tracking. Available E

Xian Yeow Lee 2 Dec 30, 2021
Recurrent Neural Network Tutorial, Part 2 - Implementing a RNN in Python and Theano

Please read the blog post that goes with this code! Jupyter Notebook Setup System Requirements: Python, pip (Optional) virtualenv To start the Jupyter

Denny Britz 863 Dec 15, 2022
Video Matting Refinement For Python

Video-matting refinement Library (use pip to install) scikit-image numpy av matplotlib Run Static background python path_to_video.mp4 Moving backgroun

3 Jan 11, 2022
This code provides a PyTorch implementation for OTTER (Optimal Transport distillation for Efficient zero-shot Recognition), as described in the paper.

Data Efficient Language-Supervised Zero-Shot Recognition with Optimal Transport Distillation This repository contains PyTorch evaluation code, trainin

Meta Research 45 Dec 20, 2022
Ascend your Jupyter Notebook usage

Jupyter Ascending Sync Jupyter Notebooks from any editor About Jupyter Ascending lets you edit Jupyter notebooks from your favorite editor, then insta

Untitled AI 254 Jan 08, 2023
PyTorch Implementation of AnimeGANv2

PyTorch implementation of AnimeGANv2

4k Jan 07, 2023