PCACE: A Statistical Approach to Ranking Neurons for CNN Interpretability

Overview

PCACE: A Statistical Approach to Ranking Neurons for CNN Interpretability

PCACE is a new algorithm for ranking neurons in a CNN architecture in order of importance towards the final classification. PCACE is a statistical method combining Alternating Condition Expectation with Principal Component Analysis to find the maximal correlation coefficient between a hidden neuron and the final class score. This yields a rigorous and standardized method for quantifying the relevance of each neuron towards the final model classification.

Summary of Usage

  1. pcace_resnet_18.py: code for the PCACE algorithm in the ResNet-18 architecture. Uses PyTorch to load the model and requires the ACE package. Caps indicate variables changeable by the user: NUM_IMAGES: the number of input images for PCACE. CLASS: the class to which the input images belong to. LAYER_NAME: name of the convolutional layer to which we apply PCACE. Follows the structure layerx[y].convz. NUM_CHANNELS: number of channels in LAYER_NAME. SIZE: number of pixels in the activation maps of LAYER_NAME. SIZE_X, SIZE_Y: height and width of the activation maps. Must have SIZE = SIZE_X*SIZE_Y. CLASS_IDX: before the softmax, which index corresponds to the class score (class of the set of input images). PCA_COMP: number of components to which PCA wishes to be reduced to. After the algorithm runs, it provides an array results with the PCACE values of all channels, which can then be sorted.

  2. pcace_vgg_16.py: same code an functionality as pcace_resnet_18.py but in the VGG-16 architecture instead of ResNet-18. Computes the PCACE values for any layer in the VGG-16 architecture.

  3. activation_maximization.py: code to visualize the filter activation maximization images with VGG-16 following the code from https://github.com/keisen/tf-keras-vis. Uses Keras to load the model and requires teh tf-keras-vis package. Caps indicate variables changeable by the user: LAYER_NAME: where is the channel whose feature visualization we are trying to see. FILTER_NUMBER: which channel within that layer.

  4. visualize_act_maps_resnet_18.py: code to visualize the activation maps of the top PCACE channels with ResNet-18. As in pcace_resnet_18.py, it uses PyTorch to load the model. Caps indicate variables changeable by the user: LAYER_NAME: name of the convolutional layer to which we apply PCACE. Follows the structure layerx[y].convz. ORDER: an array containing the PCACE channels sorted from lowest to highest value. The good_urls refer to a list containing the URLs of the images that one wishes to visualize.

  5. visualize_act_maps_vgg_16.py: same functionality as in the visualize_act_maps_resnet_18.py code (i.e., visualize the activation maps of the top PCACE channels), but in the VGG-16 architecture instead of ResNet-18.

  6. visualizing_cam.py: producing CAM visualizations with ResNet-18 following the code from https://github.com/zhoubolei/CAM. Uses PyTorch to load the model. Returns the CAM visualization of the input image (in this case, given with a URL).

  7. london_kdd_examples_slevel.csv: The .csv file contains metadata for the 300 street level images we used in our experiments. In our experiments we used images from Google Street View. More information on these images and how to use them are available from here: https://developers.google.com/maps/documentation/streetview/overview. gsv_panoid: correspods to the 'pano' parameter, which is a specific panorama ID for the image. gsv_lat, gsv_lng: corresponds the the location coordinates for the image. Both gsv_panoid and gsv_lat, gsv_lng parameters can be used to access the images used in our experiments.

Source code for CIKM 2021 paper for Relation-aware Heterogeneous Graph for User Profiling

RHGN Source code for CIKM 2021 paper for Relation-aware Heterogeneous Graph for User Profiling Dependencies torch==1.6.0 torchvision==0.7.0 dgl==0.7.1

Big Data and Multi-modal Computing Group, CRIPAC 6 Nov 29, 2022
Explainable Zero-Shot Topic Extraction

Zero-Shot Topic Extraction with Common-Sense Knowledge Graph This repository contains the code for reproducing the results reported in the paper "Expl

D2K Lab 56 Dec 14, 2022
Surrogate-Assisted Genetic Algorithm for Wrapper Feature Selection

SAGA Surrogate-Assisted Genetic Algorithm for Wrapper Feature Selection Please refer to the Jupyter notebook (Example.ipynb) for an example of using t

9 Dec 28, 2022
Pre-trained models for a Cascaded-FCN in caffe and tensorflow that segments

Cascaded-FCN This repository contains the pre-trained models for a Cascaded-FCN in caffe and tensorflow that segments the liver and its lesions out of

300 Nov 22, 2022
CTF challenges from redpwnCTF 2021

redpwnCTF 2021 Challenges This repository contains challenges from redpwnCTF 2021 in the rCDS format; challenge information is in the challenge.yaml f

redpwn 27 Dec 07, 2022
3D Human Pose Machines with Self-supervised Learning

3D Human Pose Machines with Self-supervised Learning Keze Wang, Liang Lin, Chenhan Jiang, Chen Qian, and Pengxu Wei, “3D Human Pose Machines with Self

Chenhan Jiang 398 Dec 20, 2022
9th place solution

AllDataAreExt-Galixir-Kaggle-HPA-2021-Solution Team Members Qishen Ha is Master of Engineering from the University of Tokyo. Machine Learning Engineer

daishu 5 Nov 18, 2021
PyTorch Connectomics: segmentation toolbox for EM connectomics

Introduction The field of connectomics aims to reconstruct the wiring diagram of the brain by mapping the neural connections at the level of individua

Zudi Lin 132 Dec 26, 2022
Official implementation of Unfolded Deep Kernel Estimation for Blind Image Super-resolution.

Unfolded Deep Kernel Estimation for Blind Image Super-resolution Hongyi Zheng, Hongwei Yong, Lei Zhang, "Unfolded Deep Kernel Estimation for Blind Ima

Z80 15 Dec 26, 2022
Earth Vision Foundation

EVer - A Library for Earth Vision Researcher EVer is a Pytorch-based Python library to simplify the training and inference of the deep learning model.

Zhuo Zheng 34 Nov 26, 2022
Implementation of the paper ''Implicit Feature Refinement for Instance Segmentation''.

Implicit Feature Refinement for Instance Segmentation This repository is an official implementation of the ACM Multimedia 2021 paper Implicit Feature

Lufan Ma 17 Dec 28, 2022
CDTrans: Cross-domain Transformer for Unsupervised Domain Adaptation

[ICCV2021] TransReID: Transformer-based Object Re-Identification [pdf] The official repository for TransReID: Transformer-based Object Re-Identificati

DamoCV 569 Dec 30, 2022
The description of FMFCC-A (audio track of FMFCC) dataset and Challenge resluts.

FMFCC-A This project is the description of FMFCC-A (audio track of FMFCC) dataset and Challenge resluts. The FMFCC-A dataset is shared through BaiduCl

18 Dec 24, 2022
CL-Gym: Full-Featured PyTorch Library for Continual Learning

CL-Gym: Full-Featured PyTorch Library for Continual Learning CL-Gym is a small yet very flexible library for continual learning research and developme

Iman Mirzadeh 36 Dec 25, 2022
Implements pytorch code for the Accelerated SGD algorithm.

AccSGD This is the code associated with Accelerated SGD algorithm used in the paper On the insufficiency of existing momentum schemes for Stochastic O

205 Jan 02, 2023
PyTorch DepthNet Training on Still Box dataset

DepthNet training on Still Box Project page This code can replicate the results of our paper that was published in UAVg-17. If you use this repo in yo

Clément Pinard 115 Nov 21, 2022
Grammar Induction using a Template Tree Approach

Gitta Gitta ("Grammar Induction using a Template Tree Approach") is a method for inducing context-free grammars. It performs particularly well on data

Thomas Winters 36 Nov 15, 2022
Repo for 2021 SDD assessment task 2, by Felix, Anna, and James.

SoftwareTask2 Repo for 2021 SDD assessment task 2, by Felix, Anna, and James. File/folder structure: helloworld.py - demonstrates various map backgrou

3 Dec 13, 2022
LoFTR:Detector-Free Local Feature Matching with Transformers CVPR 2021

LoFTR-with-train-script LoFTR:Detector-Free Local Feature Matching with Transformers CVPR 2021 (with train script --- unofficial ---). About Megadepth

Nan Xiaohu 15 Nov 04, 2022
Image Segmentation Animation using Quadtree concepts.

QuadTree Image Segmentation Animation using QuadTree concepts. Usage usage: quad.py [-h] [-fps FPS] [-i ITERATIONS] [-ws WRITESTART] [-b] [-img] [-s S

Alex Eidt 29 Dec 25, 2022