Deep learning for spiking neural networks

Overview

A deep learning library for spiking neural networks.

Test status chat on Discord DOI

Norse aims to exploit the advantages of bio-inspired neural components, which are sparse and event-driven - a fundamental difference from artificial neural networks. Norse expands PyTorch with primitives for bio-inspired neural components, bringing you two advantages: a modern and proven infrastructure based on PyTorch and deep learning-compatible spiking neural network components.

Documentation: norse.github.io/norse/

1. Getting started

To try Norse, the best option is to run one of the jupyter notebooks on Google collab.

Alternatively, you can install Norse and run one of the included tasks such as MNIST:

python -m norse.task.mnist

2. Using Norse

Norse presents plug-and-play components for deep learning with spiking neural networks. Here, we describe how to install Norse and start to apply it in your own work. Read more in our documentation.

2.1. Installation

We assume you are using Python version 3.7+, are in a terminal friendly environment, and have installed the necessary requirements. Read more in our documentation.

Method Instructions Prerequisites
From PyPi
pip install norse
Pip
From source
pip install -qU git+https://github.com/norse/norse
Pip, PyTorch
With Docker
docker pull quay.io/norse/norse
Docker
From Conda
conda install -c norse norse
Anaconda or Miniconda

2.2. Running examples

Norse is bundled with a number of example tasks, serving as short, self contained, correct examples (SSCCE). They can be run by invoking the norse module from the base directory. More information and tasks are available in our documentation and in your console by typing: python -m norse.task.<task> --help, where <task> is one of the task names.

  • To train an MNIST classification network, invoke
    python -m norse.task.mnist
  • To train a CIFAR classification network, invoke
    python -m norse.task.cifar10
  • To train the cartpole balancing task with Policy gradient, invoke
    python -m norse.task.cartpole

Norse is compatible with PyTorch Lightning, as demonstrated in the PyTorch Lightning MNIST task variant (requires PyTorch lightning):

python -m norse.task.mnist_pl --gpus=4

2.3. Example: Spiking convolutional classifier

Open In Colab

This classifier is a taken from our tutorial on training a spiking MNIST classifier and achieves >99% accuracy.

import torch, torch.nn as nn
from norse.torch import LICell             # Leaky integrator
from norse.torch import LIFCell            # Leaky integrate-and-fire
from norse.torch import SequentialState    # Stateful sequential layers

model = SequentialState(
    nn.Conv2d(1, 20, 5, 1),      # Convolve from 1 -> 20 channels
    LIFCell(),                   # Spiking activation layer
    nn.MaxPool2d(2, 2),
    nn.Conv2d(20, 50, 5, 1),     # Convolve from 20 -> 50 channels
    LIFCell(),
    nn.MaxPool2d(2, 2),
    nn.Flatten(),                # Flatten to 800 units
    nn.Linear(800, 10),
    LICell(),                    # Non-spiking integrator layer
)

data = torch.randn(8, 1, 28, 28) # 8 batches, 1 channel, 28x28 pixels
output, state = model(data)      # Provides a tuple (tensor (8, 10), neuron state)

2.4. Example: Long short-term spiking neural networks

The long short-term spiking neural networks from the paper by G. Bellec, D. Salaj, A. Subramoney, R. Legenstein, and W. Maass (2018) is another interesting way to apply norse:

import torch
from norse.torch import LSNNRecurrent
# Recurrent LSNN network with 2 input neurons and 10 output neurons
layer = LSNNRecurrent(2, 10)
# Generate data: 20 timesteps with 8 datapoints per batch for 2 neurons
data  = torch.zeros(20, 8, 2)
# Tuple of (output spikes of shape (20, 8, 2), layer state)
output, new_state = layer(data)

3. Why Norse?

Norse was created for two reasons: to 1) apply findings from decades of research in practical settings and to 2) accelerate our own research within bio-inspired learning.

We are passionate about Norse: we strive to follow best practices and promise to maintain this library for the simple reason that we depend on it ourselves. We have implemented a number of neuron models, synapse dynamics, encoding and decoding algorithms, dataset integrations, tasks, and examples. Combined with the PyTorch infrastructure and our high coding standards, we have found Norse to be an excellent tool for modelling scaleable experiments and Norse is actively being used in research.

Finally, we are working to keep Norse as performant as possible. Preliminary benchmarks suggest that Norse achieves excellent performance on small networks of up to ~5000 neurons per layer. Aided by the preexisting investment in scalable training and inference with PyTorch, Norse scales from a single laptop to several nodes on an HPC cluster with little effort. As illustrated by our PyTorch Lightning example task.

Read more about Norse in our documentation.

4. Similar work

The list of projects below serves to illustrate the state of the art, while explaining our own incentives to create and use norse.

  • BindsNET also builds on PyTorch and is explicitly targeted at machine learning tasks. It implements a Network abstraction with the typical 'node' and 'connection' notions common in spiking neural network simulators like nest.
  • cuSNN is a C++ GPU-accelerated simulator for large-scale networks. The library focuses on CUDA and includes spike-time dependent plasicity (STDP) learning rules.
  • decolle implements an online learning algorithm described in the paper "Synaptic Plasticity Dynamics for Deep Continuous Local Learning (DECOLLE)" by J. Kaiser, M. Mostafa and E. Neftci.
  • GeNN compiles SNN network models to NVIDIA CUDA to achieve high-performing SNN model simulations.
  • Long short-term memory Spiking Neural Networks (LSNN) is a tool from the University of Graaz for modelling LSNN cells in Tensorflow. The library focuses on a single neuron and gradient model.
  • Nengo is a neuron simulator, and Nengo-DL is a deep learning network simulator that optimised spike-based neural networks based on an approximation method suggested by Hunsberger and Eliasmith (2016). This approach maps to, but does not build on, the deep learning framework Tensorflow, which is fundamentally different from incorporating the spiking constructs into the framework itself. In turn, this requires manual translations into each individual backend, which influences portability.
  • Neuron Simulation Toolkit (NEST) constructs and evaluates highly detailed simulations of spiking neural networks. This is useful in a medical/biological sense but maps poorly to large datasets and deep learning.
  • PyNN is a Python interface that allows you to define and simulate spiking neural network models on different backends (both software simulators and neuromorphic hardware). It does not currently provide mechanisms for optimisation or arbitrary synaptic plasticity.
  • PySNN is a PyTorch extension similar to Norse. Its approach to model building is slightly different than Norse in that the neurons are stateful.
  • Rockpool is a Python package developed by SynSense for training, simulating and deploying spiking neural networks. It offers both JAX and PyTorch primitives.
  • Sinabs is a PyTorch extension by SynSense. It mainly focuses on convolutions and translation to neuromorphic hardware.
  • SlayerPyTorch is a Spike LAYer Error Reassignment library, that focuses on solutions for the temporal credit problem of spiking neurons and a probabilistic approach to backpropagation errors. It includes support for the Loihi chip.
  • SNN toolbox automates the conversion of pre-trained analog to spiking neural networks. The tool is solely for already trained networks and omits the (possibly platform specific) training.
  • snnTorch is a simulator built on PyTorch, featuring several introduction tutorials on deep learning with SNNs.
  • SpikingJelly is another PyTorch-based spiking neural network simulator. SpikingJelly uses stateful neurons. Example of training a network on MNIST.
  • SpyTorch presents a set of tutorials for training SNNs with the surrogate gradient approach SuperSpike by F. Zenke, and S. Ganguli (2017). Norse implements SuperSpike, but allows for other surrogate gradients and training approaches.
  • s2net is based on the implementation presented in SpyTorch, but implements convolutional layers as well. It also contains a demonstration how to use those primitives to train a model on the Google Speech Commands dataset.

5. Contributing

Contributions are warmly encouraged and always welcome. However, we also have high expectations around the code base so if you wish to contribute, please refer to our contribution guidelines.

6. Credits

Norse is created by

More information about Norse can be found in our documentation. The research has received funding from the EC Horizon 2020 Framework Programme under Grant Agreements 785907 and 945539 (HBP) and by the Deutsche Forschungsgemeinschaft (DFG, German Research Fundation) under Germany's Excellence Strategy EXC 2181/1 - 390900948 (the Heidelberg STRUCTURES Excellence Cluster).

7. Citation

If you use Norse in your work, please cite it as follows:

@software{norse2021,
  author       = {Pehle, Christian and
                  Pedersen, Jens Egholm},
  title        = {{Norse -  A deep learning library for spiking 
                   neural networks}},
  month        = jan,
  year         = 2021,
  note         = {Documentation: https://norse.ai/docs/},
  publisher    = {Zenodo},
  version      = {0.0.6},
  doi          = {10.5281/zenodo.4422025},
  url          = {https://doi.org/10.5281/zenodo.4422025}
}

Norse is actively applied and cited in the literature. We are keeping track of the papers cited by Norse in our documentation.

8. License

LGPLv3. See LICENSE for license details.

You might also like...
This repository contains notebook implementations of the following Neural Process variants: Conditional Neural Processes (CNPs), Neural Processes (NPs), Attentive Neural Processes (ANPs).

The Neural Process Family This repository contains notebook implementations of the following Neural Process variants: Conditional Neural Processes (CN

Deep learning (neural network) based remote photoplethysmography: how to extract pulse signal from video using deep learning tools

Deep-rPPG: Camera-based pulse estimation using deep learning tools Deep learning (neural network) based remote photoplethysmography: how to extract pu

Code for
Code for "Neural Parts: Learning Expressive 3D Shape Abstractions with Invertible Neural Networks", CVPR 2021

Neural Parts: Learning Expressive 3D Shape Abstractions with Invertible Neural Networks This repository contains the code that accompanies our CVPR 20

A flexible framework of neural networks for deep learning
A flexible framework of neural networks for deep learning

Chainer: A deep learning framework Website | Docs | Install Guide | Tutorials (ja) | Examples (Official, External) | Concepts | ChainerX Forum (en, ja

Code samples for my book "Neural Networks and Deep Learning"

Code samples for "Neural Networks and Deep Learning" This repository contains code samples for my book on "Neural Networks and Deep Learning". The cod

State of the Art Neural Networks for Deep Learning

pyradox This python library helps you with implementing various state of the art neural networks in a totally customizable fashion using Tensorflow 2

A flexible framework of neural networks for deep learning
A flexible framework of neural networks for deep learning

Chainer: A deep learning framework Website | Docs | Install Guide | Tutorials (ja) | Examples (Official, External) | Concepts | ChainerX Forum (en, ja

Transfer Learning library for Deep Neural Networks.
Transfer Learning library for Deep Neural Networks.

Transfer and meta-learning in Python Each folder in this repository corresponds to a method or tool for transfer/meta-learning. xfer-ml is a standalon

Comments
  • Add spack package file

    Add spack package file

    This adds a spack package file that successfully built on our local spack instance… however, this should be probably reflected in your github workflow → should I just try to add it (i.e. don't merge this but I'll update this PR) :)?

    opened by muffgaga 1
Releases(0.0.1)
Owner
Electronic Vision(s) Group — BrainScaleS Neuromorphic Hardware
Kirchhoff-Institute for Physics, Ruprecht-Karls-Universität Heidelberg
Electronic Vision(s) Group — BrainScaleS Neuromorphic Hardware
CIFAR-10_train-test - training and testing codes for dataset CIFAR-10

CIFAR-10_train-test - training and testing codes for dataset CIFAR-10

Frederick Wang 3 Apr 26, 2022
Pytorch implementation of SELF-ATTENTIVE VAD, ICASSP 2021

SELF-ATTENTIVE VAD: CONTEXT-AWARE DETECTION OF VOICE FROM NOISE (ICASSP 2021) Pytorch implementation of SELF-ATTENTIVE VAD | Paper | Dataset Yong Rae

97 Dec 23, 2022
A comprehensive list of published machine learning applications to cosmology

ml-in-cosmology This github attempts to maintain a comprehensive list of published machine learning applications to cosmology, organized by subject ma

George Stein 290 Dec 29, 2022
Telegram chatbot created with deep learning model (LSTM) and telebot library.

Telegram chatbot Telegram chatbot created with deep learning model (LSTM) and telebot library. Description This program will allow you to create very

1 Jan 04, 2022
A Traffic Sign Recognition Project which can help the driver recognise the signs via text as well as audio. Can be used at Night also.

Traffic-Sign-Recognition In this report, we propose a Convolutional Neural Network(CNN) for traffic sign classification that achieves outstanding perf

Mini Project 64 Nov 19, 2022
Differentiable architecture search for convolutional and recurrent networks

Differentiable Architecture Search Code accompanying the paper DARTS: Differentiable Architecture Search Hanxiao Liu, Karen Simonyan, Yiming Yang. arX

Hanxiao Liu 3.7k Jan 09, 2023
pip install python-office

🍬 python for office 👉 http://www.python4office.cn/ 👈 🌎 English Documentation 📚 简介 Python-office 是一个 Python 自动化办公第三方库,能解决大部分自动化办公的问题。而且每个功能只需一行代码,

程序员晚枫 272 Dec 29, 2022
Grad2Task: Improved Few-shot Text Classification Using Gradients for Task Representation

Grad2Task: Improved Few-shot Text Classification Using Gradients for Task Representation Prerequisites This repo is built upon a local copy of transfo

Jixuan Wang 10 Sep 28, 2022
ESGD-M - A stochastic non-convex second order optimizer, suitable for training deep learning models, for PyTorch

ESGD-M - A stochastic non-convex second order optimizer, suitable for training deep learning models, for PyTorch

Katherine Crowson 53 Dec 29, 2022
Official code implementation for "Personalized Federated Learning using Hypernetworks"

Personalized Federated Learning using Hypernetworks This is an official implementation of Personalized Federated Learning using Hypernetworks paper. [

Aviv Shamsian 121 Dec 25, 2022
SeqTR: A Simple yet Universal Network for Visual Grounding

SeqTR This is the official implementation of SeqTR: A Simple yet Universal Network for Visual Grounding, which simplifies and unifies the modelling fo

seanZhuh 76 Dec 24, 2022
Accepted at ICCV-2021: Workshop on Computer Vision for Automated Medical Diagnosis (CVAMD)

Is it Time to Replace CNNs with Transformers for Medical Images? Accepted at ICCV-2021: Workshop on Computer Vision for Automated Medical Diagnosis (C

Christos Matsoukas 80 Dec 27, 2022
Level Based Customer Segmentation

level_based_customer_segmentation Level Based Customer Segmentation Persona Veri Seti kullanılarak müşteri segmentasyonu yapılmıştır. KOLONLAR : PRICE

Buse Yıldırım 6 Dec 21, 2021
Official implementation of the ICCV 2021 paper: "The Power of Points for Modeling Humans in Clothing".

The Power of Points for Modeling Humans in Clothing (ICCV 2021) This repository contains the official PyTorch implementation of the ICCV 2021 paper: T

Qianli Ma 158 Nov 24, 2022
Head2Toe: Utilizing Intermediate Representations for Better OOD Generalization

Head2Toe: Utilizing Intermediate Representations for Better OOD Generalization Code for reproducing our results in the Head2Toe paper. Paper: arxiv.or

Google Research 62 Dec 12, 2022
PIGLeT: Language Grounding Through Neuro-Symbolic Interaction in a 3D World [ACL 2021]

piglet PIGLeT: Language Grounding Through Neuro-Symbolic Interaction in a 3D World [ACL 2021] This repo contains code and data for PIGLeT. If you like

Rowan Zellers 51 Oct 08, 2022
Composable transformations of Python+NumPy programs: differentiate, vectorize, JIT to GPU/TPU, and more

JAX: Autograd and XLA Quickstart | Transformations | Install guide | Neural net libraries | Change logs | Reference docs | Code search News: JAX tops

Google 21.3k Jan 01, 2023
A pure PyTorch batched computation implementation of "CIF: Continuous Integrate-and-Fire for End-to-End Speech Recognition"

A pure PyTorch batched computation implementation of "CIF: Continuous Integrate-and-Fire for End-to-End Speech Recognition"

張致強 14 Dec 02, 2022
Neural Geometric Level of Detail: Real-time Rendering with Implicit 3D Shapes (CVPR 2021 Oral)

Neural Geometric Level of Detail: Real-time Rendering with Implicit 3D Surfaces Official code release for NGLOD. For technical details, please refer t

659 Dec 27, 2022
Implementation of experiments in the paper Clockwork Variational Autoencoders (project website) using JAX and Flax

Clockwork VAEs in JAX/Flax Implementation of experiments in the paper Clockwork Variational Autoencoders (project website) using JAX and Flax, ported

Julius Kunze 26 Oct 05, 2022