Deep learning for spiking neural networks

Overview

A deep learning library for spiking neural networks.

Test status chat on Discord DOI

Norse aims to exploit the advantages of bio-inspired neural components, which are sparse and event-driven - a fundamental difference from artificial neural networks. Norse expands PyTorch with primitives for bio-inspired neural components, bringing you two advantages: a modern and proven infrastructure based on PyTorch and deep learning-compatible spiking neural network components.

Documentation: norse.github.io/norse/

1. Getting started

To try Norse, the best option is to run one of the jupyter notebooks on Google collab.

Alternatively, you can install Norse and run one of the included tasks such as MNIST:

python -m norse.task.mnist

2. Using Norse

Norse presents plug-and-play components for deep learning with spiking neural networks. Here, we describe how to install Norse and start to apply it in your own work. Read more in our documentation.

2.1. Installation

We assume you are using Python version 3.7+, are in a terminal friendly environment, and have installed the necessary requirements. Read more in our documentation.

Method Instructions Prerequisites
From PyPi
pip install norse
Pip
From source
pip install -qU git+https://github.com/norse/norse
Pip, PyTorch
With Docker
docker pull quay.io/norse/norse
Docker
From Conda
conda install -c norse norse
Anaconda or Miniconda

2.2. Running examples

Norse is bundled with a number of example tasks, serving as short, self contained, correct examples (SSCCE). They can be run by invoking the norse module from the base directory. More information and tasks are available in our documentation and in your console by typing: python -m norse.task.<task> --help, where <task> is one of the task names.

  • To train an MNIST classification network, invoke
    python -m norse.task.mnist
  • To train a CIFAR classification network, invoke
    python -m norse.task.cifar10
  • To train the cartpole balancing task with Policy gradient, invoke
    python -m norse.task.cartpole

Norse is compatible with PyTorch Lightning, as demonstrated in the PyTorch Lightning MNIST task variant (requires PyTorch lightning):

python -m norse.task.mnist_pl --gpus=4

2.3. Example: Spiking convolutional classifier

Open In Colab

This classifier is a taken from our tutorial on training a spiking MNIST classifier and achieves >99% accuracy.

import torch, torch.nn as nn
from norse.torch import LICell             # Leaky integrator
from norse.torch import LIFCell            # Leaky integrate-and-fire
from norse.torch import SequentialState    # Stateful sequential layers

model = SequentialState(
    nn.Conv2d(1, 20, 5, 1),      # Convolve from 1 -> 20 channels
    LIFCell(),                   # Spiking activation layer
    nn.MaxPool2d(2, 2),
    nn.Conv2d(20, 50, 5, 1),     # Convolve from 20 -> 50 channels
    LIFCell(),
    nn.MaxPool2d(2, 2),
    nn.Flatten(),                # Flatten to 800 units
    nn.Linear(800, 10),
    LICell(),                    # Non-spiking integrator layer
)

data = torch.randn(8, 1, 28, 28) # 8 batches, 1 channel, 28x28 pixels
output, state = model(data)      # Provides a tuple (tensor (8, 10), neuron state)

2.4. Example: Long short-term spiking neural networks

The long short-term spiking neural networks from the paper by G. Bellec, D. Salaj, A. Subramoney, R. Legenstein, and W. Maass (2018) is another interesting way to apply norse:

import torch
from norse.torch import LSNNRecurrent
# Recurrent LSNN network with 2 input neurons and 10 output neurons
layer = LSNNRecurrent(2, 10)
# Generate data: 20 timesteps with 8 datapoints per batch for 2 neurons
data  = torch.zeros(20, 8, 2)
# Tuple of (output spikes of shape (20, 8, 2), layer state)
output, new_state = layer(data)

3. Why Norse?

Norse was created for two reasons: to 1) apply findings from decades of research in practical settings and to 2) accelerate our own research within bio-inspired learning.

We are passionate about Norse: we strive to follow best practices and promise to maintain this library for the simple reason that we depend on it ourselves. We have implemented a number of neuron models, synapse dynamics, encoding and decoding algorithms, dataset integrations, tasks, and examples. Combined with the PyTorch infrastructure and our high coding standards, we have found Norse to be an excellent tool for modelling scaleable experiments and Norse is actively being used in research.

Finally, we are working to keep Norse as performant as possible. Preliminary benchmarks suggest that Norse achieves excellent performance on small networks of up to ~5000 neurons per layer. Aided by the preexisting investment in scalable training and inference with PyTorch, Norse scales from a single laptop to several nodes on an HPC cluster with little effort. As illustrated by our PyTorch Lightning example task.

Read more about Norse in our documentation.

4. Similar work

The list of projects below serves to illustrate the state of the art, while explaining our own incentives to create and use norse.

  • BindsNET also builds on PyTorch and is explicitly targeted at machine learning tasks. It implements a Network abstraction with the typical 'node' and 'connection' notions common in spiking neural network simulators like nest.
  • cuSNN is a C++ GPU-accelerated simulator for large-scale networks. The library focuses on CUDA and includes spike-time dependent plasicity (STDP) learning rules.
  • decolle implements an online learning algorithm described in the paper "Synaptic Plasticity Dynamics for Deep Continuous Local Learning (DECOLLE)" by J. Kaiser, M. Mostafa and E. Neftci.
  • GeNN compiles SNN network models to NVIDIA CUDA to achieve high-performing SNN model simulations.
  • Long short-term memory Spiking Neural Networks (LSNN) is a tool from the University of Graaz for modelling LSNN cells in Tensorflow. The library focuses on a single neuron and gradient model.
  • Nengo is a neuron simulator, and Nengo-DL is a deep learning network simulator that optimised spike-based neural networks based on an approximation method suggested by Hunsberger and Eliasmith (2016). This approach maps to, but does not build on, the deep learning framework Tensorflow, which is fundamentally different from incorporating the spiking constructs into the framework itself. In turn, this requires manual translations into each individual backend, which influences portability.
  • Neuron Simulation Toolkit (NEST) constructs and evaluates highly detailed simulations of spiking neural networks. This is useful in a medical/biological sense but maps poorly to large datasets and deep learning.
  • PyNN is a Python interface that allows you to define and simulate spiking neural network models on different backends (both software simulators and neuromorphic hardware). It does not currently provide mechanisms for optimisation or arbitrary synaptic plasticity.
  • PySNN is a PyTorch extension similar to Norse. Its approach to model building is slightly different than Norse in that the neurons are stateful.
  • Rockpool is a Python package developed by SynSense for training, simulating and deploying spiking neural networks. It offers both JAX and PyTorch primitives.
  • Sinabs is a PyTorch extension by SynSense. It mainly focuses on convolutions and translation to neuromorphic hardware.
  • SlayerPyTorch is a Spike LAYer Error Reassignment library, that focuses on solutions for the temporal credit problem of spiking neurons and a probabilistic approach to backpropagation errors. It includes support for the Loihi chip.
  • SNN toolbox automates the conversion of pre-trained analog to spiking neural networks. The tool is solely for already trained networks and omits the (possibly platform specific) training.
  • snnTorch is a simulator built on PyTorch, featuring several introduction tutorials on deep learning with SNNs.
  • SpikingJelly is another PyTorch-based spiking neural network simulator. SpikingJelly uses stateful neurons. Example of training a network on MNIST.
  • SpyTorch presents a set of tutorials for training SNNs with the surrogate gradient approach SuperSpike by F. Zenke, and S. Ganguli (2017). Norse implements SuperSpike, but allows for other surrogate gradients and training approaches.
  • s2net is based on the implementation presented in SpyTorch, but implements convolutional layers as well. It also contains a demonstration how to use those primitives to train a model on the Google Speech Commands dataset.

5. Contributing

Contributions are warmly encouraged and always welcome. However, we also have high expectations around the code base so if you wish to contribute, please refer to our contribution guidelines.

6. Credits

Norse is created by

More information about Norse can be found in our documentation. The research has received funding from the EC Horizon 2020 Framework Programme under Grant Agreements 785907 and 945539 (HBP) and by the Deutsche Forschungsgemeinschaft (DFG, German Research Fundation) under Germany's Excellence Strategy EXC 2181/1 - 390900948 (the Heidelberg STRUCTURES Excellence Cluster).

7. Citation

If you use Norse in your work, please cite it as follows:

@software{norse2021,
  author       = {Pehle, Christian and
                  Pedersen, Jens Egholm},
  title        = {{Norse -  A deep learning library for spiking 
                   neural networks}},
  month        = jan,
  year         = 2021,
  note         = {Documentation: https://norse.ai/docs/},
  publisher    = {Zenodo},
  version      = {0.0.6},
  doi          = {10.5281/zenodo.4422025},
  url          = {https://doi.org/10.5281/zenodo.4422025}
}

Norse is actively applied and cited in the literature. We are keeping track of the papers cited by Norse in our documentation.

8. License

LGPLv3. See LICENSE for license details.

You might also like...
This repository contains notebook implementations of the following Neural Process variants: Conditional Neural Processes (CNPs), Neural Processes (NPs), Attentive Neural Processes (ANPs).

The Neural Process Family This repository contains notebook implementations of the following Neural Process variants: Conditional Neural Processes (CN

Deep learning (neural network) based remote photoplethysmography: how to extract pulse signal from video using deep learning tools

Deep-rPPG: Camera-based pulse estimation using deep learning tools Deep learning (neural network) based remote photoplethysmography: how to extract pu

Code for
Code for "Neural Parts: Learning Expressive 3D Shape Abstractions with Invertible Neural Networks", CVPR 2021

Neural Parts: Learning Expressive 3D Shape Abstractions with Invertible Neural Networks This repository contains the code that accompanies our CVPR 20

A flexible framework of neural networks for deep learning
A flexible framework of neural networks for deep learning

Chainer: A deep learning framework Website | Docs | Install Guide | Tutorials (ja) | Examples (Official, External) | Concepts | ChainerX Forum (en, ja

Code samples for my book "Neural Networks and Deep Learning"

Code samples for "Neural Networks and Deep Learning" This repository contains code samples for my book on "Neural Networks and Deep Learning". The cod

State of the Art Neural Networks for Deep Learning

pyradox This python library helps you with implementing various state of the art neural networks in a totally customizable fashion using Tensorflow 2

A flexible framework of neural networks for deep learning
A flexible framework of neural networks for deep learning

Chainer: A deep learning framework Website | Docs | Install Guide | Tutorials (ja) | Examples (Official, External) | Concepts | ChainerX Forum (en, ja

Transfer Learning library for Deep Neural Networks.
Transfer Learning library for Deep Neural Networks.

Transfer and meta-learning in Python Each folder in this repository corresponds to a method or tool for transfer/meta-learning. xfer-ml is a standalon

Comments
  • Add spack package file

    Add spack package file

    This adds a spack package file that successfully built on our local spack instance… however, this should be probably reflected in your github workflow → should I just try to add it (i.e. don't merge this but I'll update this PR) :)?

    opened by muffgaga 1
Releases(0.0.1)
Owner
Electronic Vision(s) Group — BrainScaleS Neuromorphic Hardware
Kirchhoff-Institute for Physics, Ruprecht-Karls-Universität Heidelberg
Electronic Vision(s) Group — BrainScaleS Neuromorphic Hardware
Code for: https://berkeleyautomation.github.io/bags/

DeformableRavens Code for the paper Learning to Rearrange Deformable Cables, Fabrics, and Bags with Goal-Conditioned Transporter Networks. Here is the

Daniel Seita 121 Dec 30, 2022
The official github repository for Towards Continual Knowledge Learning of Language Models

Towards Continual Knowledge Learning of Language Models This is the official github repository for Towards Continual Knowledge Learning of Language Mo

Joel Jang | 장요엘 65 Jan 07, 2023
The official pytorch implemention of the CVPR paper "Temporal Modulation Network for Controllable Space-Time Video Super-Resolution".

This is the official PyTorch implementation of TMNet in the CVPR 2021 paper "Temporal Modulation Network for Controllable Space-Time VideoSuper-Resolu

Gang Xu 95 Oct 24, 2022
Project code for weakly supervised 3D object detectors using wide-baseline multi-view traffic camera data: WIBAM.

WIBAM (Work in progress) Weakly Supervised Training of Monocular 3D Object Detectors Using Wide Baseline Multi-view Traffic Camera Data 3D object dete

Matthew Howe 10 Aug 24, 2022
Fully Convlutional Neural Networks for state-of-the-art time series classification

Deep Learning for Time Series Classification As the simplest type of time series data, univariate time series provides a reasonably good starting poin

Stephen 572 Dec 23, 2022
GEP (GDB Enhanced Prompt) - a GDB plug-in for GDB command prompt with fzf history search, fish-like autosuggestions, auto-completion with floating window, partial string matching in history, and more!

GEP (GDB Enhanced Prompt) GEP (GDB Enhanced Prompt) is a GDB plug-in which make your GDB command prompt more convenient and flexibility. Why I need th

Alan Li 23 Dec 21, 2022
IsoGCN code for ICLR2021

IsoGCN The official implementation of IsoGCN, presented in the ICLR2021 paper Isometric Transformation Invariant and Equivariant Graph Convolutional N

horiem 39 Nov 25, 2022
PyTorch implementation of DeepUME: Learning the Universal Manifold Embedding for Robust Point Cloud Registration (BMVC 2021)

DeepUME: Learning the Universal Manifold Embedding for Robust Point Cloud Registration [video] [paper] [supplementary] [data] [thesis] Introduction De

Natalie Lang 10 Dec 14, 2022
A framework for multi-step probabilistic time-series/demand forecasting models

JointDemandForecasting.py A framework for multi-step probabilistic time-series/demand forecasting models File stucture JointDemandForecasting contains

Stanford Intelligent Systems Laboratory 3 Sep 28, 2022
This repository is for Competition for ML_data class

This repository is for Competition for ML_data class. Based on mmsegmentatoin,mainly using swin transformer to completed the competition.

jianlong 2 Oct 23, 2022
Fast SHAP value computation for interpreting tree-based models

FastTreeSHAP FastTreeSHAP package is built based on the paper Fast TreeSHAP: Accelerating SHAP Value Computation for Trees published in NeurIPS 2021 X

LinkedIn 369 Jan 04, 2023
This is the codebase for Diffusion Models Beat GANS on Image Synthesis.

This is the codebase for Diffusion Models Beat GANS on Image Synthesis.

OpenAI 3k Dec 26, 2022
NeurIPS 2021, self-supervised 6D pose on category level

SE(3)-eSCOPE video | paper | website Leveraging SE(3) Equivariance for Self-Supervised Category-Level Object Pose Estimation Xiaolong Li, Yijia Weng,

Xiaolong 63 Nov 22, 2022
A multi-mode modulator for multi-domain few-shot classification (ICCV)

A multi-mode modulator for multi-domain few-shot classification (ICCV)

Yanbin Liu 8 Apr 28, 2022
[arXiv'22] Panoptic NeRF: 3D-to-2D Label Transfer for Panoptic Urban Scene Segmentation

Panoptic NeRF Project Page | Paper | Dataset Panoptic NeRF: 3D-to-2D Label Transfer for Panoptic Urban Scene Segmentation Xiao Fu*, Shangzhan zhang*,

Xiao Fu 111 Dec 16, 2022
Like Dirt-Samples, but cleaned up

Clean-Samples Like Dirt-Samples, but cleaned up, with clear provenance and license info (generally a permissive creative commons licence but check the

TidalCycles 39 Nov 30, 2022
Implementing Graph Convolutional Networks and Information Retrieval Mechanisms using pure Python and NumPy

Implementing Graph Convolutional Networks and Information Retrieval Mechanisms using pure Python and NumPy

Noah Getz 3 Jun 22, 2022
Classifying audio using Wavelet transform and deep learning

Audio Classification using Wavelet Transform and Deep Learning A step-by-step tutorial to classify audio signals using continuous wavelet transform (C

Aditya Dutt 17 Nov 29, 2022
Few-shot NLP benchmark for unified, rigorous eval

FLEX FLEX is a benchmark and framework for unified, rigorous few-shot NLP evaluation. FLEX enables: First-class NLP support Support for meta-training

AI2 85 Dec 03, 2022
Multi-label classification of retinal disorders

Multi-label classification of retinal disorders This is a deep learning course project. The goal is to develop a solution, using computer vision techn

Sundeep Bhimireddy 1 Jan 29, 2022