An implementation of DeepMind's Relational Recurrent Neural Networks in PyTorch.

Overview

relational-rnn-pytorch

An implementation of DeepMind's Relational Recurrent Neural Networks (Santoro et al. 2018) in PyTorch.

Relational Memory Core (RMC) module is originally from official Sonnet implementation. However, currently they do not provide a full language modeling benchmark code.

This repo is a port of RMC with additional comments. It features a full-fledged word language modeling benchmark vs. traditional LSTM.

It supports any arbitrary word token-based text dataset, including WikiText-2 & WikiText-103.

Both RMC & LSTM models support adaptive softmax for much lower memory usage of large vocabulary dataset. RMC supports PyTorch's DataParallel, so you can easily experiment with a multi-GPU setup.

benchmark codes are hard-forked from official PyTorch word-language-model example

It also features an N-th farthest synthetic task from the paper (see below).

Requirements

PyTorch 0.4.1 or later (Tested on 1.0.0) & Python 3.6

Examples

python train_rmc.py --cuda for full training & test run of RMC with GPU.

python train_rmc.py --cuda --adaptivesoftmax --cutoffs 1000 5000 20000 if using large vocabulary dataset (like WikiText-103) to fit all the tensors in the VRAM.

python generate_rmc.py --cuda for generating sentences from the trained model.

python train_rnn.py --cuda for full training & test run of traditional RNN with GPU.

All default hyperparameters of RMC & LSTM are results from a two-week experiment using WikiText-2.

Data Preparation

Tested with WikiText-2 and WikiText-103. WikiText-2 is bundled.

Create a subfolder inside ./data and place word-level train.txt, valid.txt, and test.txt inside the subfolder.

Specify --data=(subfolder name) and you are good to go.

The code performs tokenization at the first training run, and the corpus is saved as pickle. The code will load the pickle file after the first run.

WikiText-2 Benchmark Results

Both RMC & LSTM have ~11M parameters. Please refer to the training code for details on hyperparameters.

Models Valid Perplexity Test Perplexity Forward pass ms/batch (TITAN Xp) Forward pass ms/batch (TITAN V)
LSTM (CuDNN) 111.31 105.56 26~27 40~41
LSTM (For Loop) Same as CuDNN Same as CuDNN 30~31 60~61
RMC 112.77 107.21 110~130 220~230

RMC can reach a comparable performance to LSTM (with heavy hyperparameter search), but it turns out that the RMC is very slow. The multi-head self-attention at every time step may be the culprit here. Using LSTMCell with for loop (which is more "fair" benchmark for RMC) slows down the forward pass, but it's still much faster.

Please also note that the hyperparameter for RMC is a worst-case scenario in terms of speed, because it used a single memory slot (as described in the paper) and did not benefit from a row-wise weight sharing from multi-slot memory.

Interesting to note here is that the speed is slower in TITAN V than TITAN Xp. The reason might be that the models are relatively small and the model calls small linear operations frequently.

Maybe TITAN Xp (~1,900Mhz unlocked CUDA clock speed vs. TITAN V's 1,335Mhz limit) benefits from these kind of workload. Or maybe TITAN V's CUDA kernel launch latency is higher for the ops in the model.

I'm not an expert in details of CUDA. Please share your results!

RMC Hyperparameter Search Results

Attention parameters tend to overfit the WikiText-2. reducing the hyperparmeters for attention (key_size) can combat the overfitting.

Applying dropout at the output logit before the softmax (like the LSTM one) helped preventing the overfitting.

embed & head size # heads attention MLP layers key size dropout at output memory slots test ppl
128 4 3 128 No 1 128.81
128 4 3 128 No 1 128.81
128 8 3 128 No 1 141.84
128 4 3 32 No 1 123.26
128 4 3 32 Yes 1 112.4
128 4 3 64 No 1 124.44
128 4 3 64 Yes 1 110.16
128 4 2 64 Yes 1 111.67
64 4 3 64 Yes 1 133.68
64 4 3 32 Yes 1 135.93
64 4 3 64 Yes 4 137.93
192 4 3 64 Yes 1 107.21
192 4 3 64 Yes 4 114.85
256 4 3 256 No 1 194.73
256 4 3 64 Yes 1 126.39

About WikiText-103

The original RMC paper presents WikiText-103 results with a larger model & batch size (6 Tesla P100, each with 64 batch size, so a total of 384. Ouch).

Using a full softmax easily blows up the VRAM. Using --adaptivesoftmax is highly recommended. If using --adaptivesoftmax, --cutoffs should be properly provided. Please refer to the original API description

I don't have such hardware and my resource is too limited to do the experiments. Benchmark result, or any other contributions are very welcome!

Nth Farthest Task

The objective of the task is: Given k randomly labelled (from 1 to k) D-dimensional vectors, identify which is the Nth farthest vector from vector M. (The answer is an integer from 1 to k.)

The specific task in the paper is: given 8 labelled 16-dimensional vectors, which is the Nth farthest vector from vector M? The vectors are labelled randomly so the model has to recognise that the Mth vector is the vector labelled as M as opposed to the vector in the Mth position in the input.

The input to the model comprises 8 40-dimensional vectors for each example. Each of these 40-dimensional vectors is structured like this:

[(vector 1) (label: which vector is it, from 1 to 8, one-hot encoded) (N, one-hot encoded) (M, one-hot encoded)] 

Example

python train_nth_farthest.py --cuda for training and testing on the Nth Farthest Task with GPU(s).

This uses the RelationalMemory class in relational_rnn_general.py, which is a version of relational_rnn_models.py without the language-modelling specific code.

Please refer totrain_nth_farthest.py for details on hyperparameter values. These are taken from Appendix A1 in the paper and from the Sonnet implementation when the hyperparameter values are not given in the paper.

Note: new examples are generated per epoch as in the Sonnet implementation. This seems to be consistent with the paper, which does not specify the number of examples used.

Experiment results

The model has been trained with a single TITAN Xp GPU for forever until it reaches 91% test accuracy. Below are the results with 3 independent runs:

The model does break the 25% barrier if trained long enough, but the wall clock time is roughly over 2~3x longer than those reported in the paper.

TODO

Experiment with different hyperparameters

Owner
Sang-gil Lee
Ph.D. student in ML/AI @ Seoul National University, South Korea. I do deep learning for sequence & generative models.
Sang-gil Lee
Self-supervised Label Augmentation via Input Transformations (ICML 2020)

Self-supervised Label Augmentation via Input Transformations Authors: Hankook Lee, Sung Ju Hwang, Jinwoo Shin (KAIST) Accepted to ICML 2020 Install de

hankook 96 Dec 29, 2022
Official Implementation of CVPR 2022 paper: "Mimicking the Oracle: An Initial Phase Decorrelation Approach for Class Incremental Learning"

(CVPR 2022) Mimicking the Oracle: An Initial Phase Decorrelation Approach for Class Incremental Learning ArXiv This repo contains Official Implementat

Yujun Shi 24 Nov 01, 2022
This repo holds code for TransUNet: Transformers Make Strong Encoders for Medical Image Segmentation

TransUNet This repo holds code for TransUNet: Transformers Make Strong Encoders for Medical Image Segmentation Usage

1.4k Jan 04, 2023
SCU OlympicsRunning Baseline

Competition 1v1 running Environment check details in Jidi Competition RLChina2021智能体竞赛 做出的修改: 奖励重塑:修改了环境,重新设置了奖励的分配,使得奖励组成不只有零和博弈,还有探索环境的奖励。 算法微调:修改了官

ZiSeoi Wong 2 Nov 23, 2021
Object Detection with YOLOv3

Object Detection with YOLOv3 Bu projede YOLOv3-608 modeli kullanılmıştır. Requirements Python 3.8 OpenCV Numpy Documentation Yolo ile ilgili detaylı b

Ayşe Konuş 0 Mar 27, 2022
Adaptive Attention Span for Reinforcement Learning

Adaptive Transformers in RL Official implementation of Adaptive Transformers in RL In this work we replicate several results from Stabilizing Transfor

100 Nov 15, 2022
pixelNeRF: Neural Radiance Fields from One or Few Images

pixelNeRF: Neural Radiance Fields from One or Few Images Alex Yu, Vickie Ye, Matthew Tancik, Angjoo Kanazawa UC Berkeley arXiv: http://arxiv.org/abs/2

Alex Yu 1k Jan 04, 2023
Springer Link Download Module for Python

♞ pupalink A simple Python module to search and download books from SpringerLink. 🧪 This project is still in an early stage of development. Expect br

Pupa Corp. 18 Nov 21, 2022
Unsupervised captioning - Code for Unsupervised Image Captioning

Unsupervised Image Captioning by Yang Feng, Lin Ma, Wei Liu, and Jiebo Luo Introduction Most image captioning models are trained using paired image-se

Yang Feng 207 Dec 24, 2022
A GPT, made only of MLPs, in Jax

MLP GPT - Jax (wip) A GPT, made only of MLPs, in Jax. The specific MLP to be used are gMLPs with the Spatial Gating Units. Working Pytorch implementat

Phil Wang 53 Sep 27, 2022
Multi-Output Gaussian Process Toolkit

Multi-Output Gaussian Process Toolkit Paper - API Documentation - Tutorials & Examples The Multi-Output Gaussian Process Toolkit is a Python toolkit f

GAMES 113 Nov 25, 2022
Permeability Prediction Via Multi Scale 3D CNN

Permeability-Prediction-Via-Multi-Scale-3D-CNN Data: The raw CT rock cores are obtained from the Imperial Colloge portal. The CT rock cores are sub-sa

Mohamed Elmorsy 2 Jul 06, 2022
Self-supervised learning optimally robust representations for domain generalization.

OptDom: Learning Optimal Representations for Domain Generalization This repository contains the official implementation for Optimal Representations fo

Yangjun Ruan 18 Aug 25, 2022
Proto-RL: Reinforcement Learning with Prototypical Representations

Proto-RL: Reinforcement Learning with Prototypical Representations This is a PyTorch implementation of Proto-RL from Reinforcement Learning with Proto

Denis Yarats 74 Dec 06, 2022
[CVPR 2021] Semi-Supervised Semantic Segmentation with Cross Pseudo Supervision

TorchSemiSeg [CVPR 2021] Semi-Supervised Semantic Segmentation with Cross Pseudo Supervision by Xiaokang Chen1, Yuhui Yuan2, Gang Zeng1, Jingdong Wang

Chen XiaoKang 387 Jan 08, 2023
Contains supplementary materials for reproduce results in HMC divergence time estimation manuscript

Scalable Bayesian divergence time estimation with ratio transformations This repository contains the instructions and files to reproduce the analyses

Suchard Research Group 1 Sep 21, 2022
PyTorch implementation of Value Iteration Networks (VIN): Clean, Simple and Modular. Visualization in Visdom.

VIN: Value Iteration Networks This is an implementation of Value Iteration Networks (VIN) in PyTorch to reproduce the results.(TensorFlow version) Key

Xingdong Zuo 215 Dec 07, 2022
PointPillars inference with TensorRT

A project demonstrating how to use CUDA-PointPillars to deal with cloud points data from lidar.

NVIDIA AI IOT 315 Dec 31, 2022
Stacked Hourglass Network with a Multi-level Attention Mechanism: Where to Look for Intervertebral Disc Labeling

⚠️ ‎‎‎ A more recent and actively-maintained version of this code is available in ivadomed Stacked Hourglass Network with a Multi-level Attention Mech

Reza Azad 14 Oct 24, 2022
Python PID Tuner - Makes a model of the System from a Process Reaction Curve and calculates PID Gains

PythonPID_Tuner_SOPDT Step 1: Takes a Process Reaction Curve in csv format - assumes data at 100ms interval (column names CV and PV) Step 2: Makes a r

1 Jan 18, 2022