Honours project, on creating a depth estimation map from two stereo images of featureless regions

Overview

image-processing

This module generates depth maps for shape-blocked-out images

Install

If working with anaconda, then from the root directory:

conda env create --file environment.yml
conda activate image-processing

Otherwise, if python 3 is installed, pip can be used to ensure the required packages are available. From the root directory, run

pip install -r requirements.txt

Files

The core functional files are collection.py, image.py, shape.py, edge.py, segment.py. They each contain a class of the same name. They logically follow this order and encapsulate each other, so collection creates three image objects for the left, center and right images. Each image object creates a number of shape objects. Shape objects create edge objects. Edge objects create segment objects. helper.py contains assisting functions used by these various classes.

This design aids in splitting up all the information and processes necessary to perform the desired function and logically groups it to ease comprehension. Each ought to be well-commented enough to generally understand what each part is doing.

The only one intended to be accessed to retrieve depth maps is collection.py as it orchestrates the entire process.

Usage

Both main.py and auto_gen.py are designed to access collection and to have it create depth maps. They require the initial images to be stored within a directory in assets/ , and each with three further subdirectories, cameraLeft/, cameraCenter/, and cameraRight/ . They save their results to saves/ with the generated images being stored in saves/generated/ . All .img files are object-files generated during this process to reduce the workload needed the next time the same process is executed.

Main

main.py is for individual depth map generation. There are four arguments able to be passed to specify details to the execution.

  1. The directory name desired from within assets/ .
  2. The numerical index (starting at 0) of the specific image desired within the innermost subdirectories
  3. The number representing which image should the depth map visual be based on (0 for left, 1 for center, 2 for right)
  4. Should the resulting depth image be saved
  5. Should the resulting depth image be displayed

While it can take up to these four arguments, no arguments is also possible. Then, the directory within assets/ is randomly selected, as is the index of the image set, and which image is used to generate the depth map visual. It will save and display the results. Partial arguments is also fine, so long as order is maintained.

Example: To display on the left image but not save occluded_road's first image set

python main.py occluded_road 0 0 False True

note: the last argument, True, is redundant in this case
 
Example: Any road_no_occlusion image set, any image used to create the depth map visual (automatically will save and display)

python main.py road_no_occlusion

 

Example: Anything (automatically will save and display)

python main.py

 

The value of having it execute a certain image when its depth image has already been generated is that it will quickly pull it up in the viewer and unlike the static image one can view the individual pixel values the mouse hovers over in the top-right corner.

 

Auto_gen

Alternatively, auto_gen.py is intended for the automated creation of all depth map images.

python auto_gen.py

By simply executing it, it will determine the depth map image all image sets and save them all. The terminal output is saved to a txt file stored in saves/logs. It does not display the results, as that would greatly heed the process of creating all of the results.

Alternatively, it can take two arguments.

  1. Specifies a directory within assets/ to use rather than executing for all of them, similar to the first argument for main.py
  2. Specifies the image to be used as the basis for the depth map visual, similar to the third argument for main.py (0-2 for left, center, and right)

Example: All depth images

python auto_gen.py

 
Example: All Shape_based_stereoPairs depth images using the right image

python auto_gen.py Shape_based_stereoPairs 2

 

For both, if an existing depth map exists, it will not be redone even if the image expected to be used is different. To do so, remove both the .jpg and .img and re-run.

How it works

 

Initialization

Upon creation of an instance of collection, it first intantiates the left image's Image intance. The shape colours are determined and then each shape is instantiated. The bounding box of the given shape is determined as well as its left and right edges, and their segments.

Collection uses the colours determined by the left Image to speed up the other two image's instantiations.

After everything has been created, the segments of each edge, of each shape, in each image must be assigned. First this process requires determining the displacement of edges, which is then used to determine which shape owns and doesn't own which segment.

Generally at this stage all but a few stragglers are assigned. The remaining are due to shapes having few edges, and the only one it could own is shared with the ground or sky shape, and thus difficult to tell which owns it. Using additional information about the shapes ownership is assigned. Finally, it checks to see if any shapes are the ground or sky, as their depths are not calculated.

At this stage, the image objects are saved.

Depth calculation

Then, using this information about the edges of a shape, its depth can be more accurately calculated. Only edges it owns are used to determine its depth. So if it only has its right side, only the right edge is used. Alternatively if both are owned, the midpoint is used.

However, if the shape is determined to have a varying depth, then its depth can alternatively be calculated using the change of slope between the images.

Finally, once all depth values are found, a modified version of the original image is created with its shape colours replaced with their determined depth values, the sky is replaced with pure black, and the ground with pure white. This image is then possibly saved and possibly displayed. Which image is used to re-colour for the depth map depends on either a given argument or random selection.

PyTorch implementation for the paper Pseudo Numerical Methods for Diffusion Models on Manifolds

Pseudo Numerical Methods for Diffusion Models on Manifolds (PNDM) This repo is the official PyTorch implementation for the paper Pseudo Numerical Meth

Luping Liu (刘路平) 196 Jan 05, 2023
基于Flask开发后端、VUE开发前端框架,在WEB端部署YOLOv5目标检测模型

基于Flask开发后端、VUE开发前端框架,在WEB端部署YOLOv5目标检测模型

37 Jan 01, 2023
Agent-based model simulator for air quality and pandemic risk assessment in architectural spaces

Agent-based model simulation for air quality and pandemic risk assessment in architectural spaces. User Guide archABM is a fast and open source agent-

Vicomtech 10 Dec 05, 2022
Repositorio oficial del curso IIC2233 Programación Avanzada 🚀✨

IIC2233 - Programación Avanzada Evaluación Las evaluaciones serán efectuadas por medio de actividades prácticas en clases y tareas. Se calculará la no

IIC2233 @ UC 47 Sep 06, 2022
TensorFlow implementation of original paper : https://github.com/hszhao/PSPNet

Keras implementation of PSPNet(caffe) Implemented Architecture of Pyramid Scene Parsing Network in Keras. For the best compability please use Python3.

VladKry 386 Dec 29, 2022
The official github repository for Towards Continual Knowledge Learning of Language Models

Towards Continual Knowledge Learning of Language Models This is the official github repository for Towards Continual Knowledge Learning of Language Mo

Joel Jang | 장요엘 65 Jan 07, 2023
This repo is a PyTorch implementation for Paper "Unsupervised Learning for Cuboid Shape Abstraction via Joint Segmentation from Point Clouds"

Unsupervised Learning for Cuboid Shape Abstraction via Joint Segmentation from Point Clouds This repository is a PyTorch implementation for paper: Uns

Kaizhi Yang 42 Dec 09, 2022
A repository for the updated version of CoinRun used to collect MUGEN, a multimodal video-audio-text dataset.

A repository for the updated version of CoinRun used to collect MUGEN, a multimodal video-audio-text dataset. This repo contains scripts to train RL agents to navigate the closed world and collect vi

MUGEN 11 Oct 22, 2022
Weakly Supervised Learning of Instance Segmentation with Inter-pixel Relations, CVPR 2019 (Oral)

Weakly Supervised Learning of Instance Segmentation with Inter-pixel Relations The code of: Weakly Supervised Learning of Instance Segmentation with I

Jiwoon Ahn 472 Dec 29, 2022
Lipstick ain't enough: Beyond Color-Matching for In-the-Wild Makeup Transfer (CVPR 2021)

Table of Content Introduction Datasets Getting Started Requirements Usage Example Training & Evaluation CPM: Color-Pattern Makeup Transfer CPM is a ho

VinAI Research 248 Dec 13, 2022
Introducing neural networks to predict stock prices

IntroNeuralNetworks in Python: A Template Project IntroNeuralNetworks is a project that introduces neural networks and illustrates an example of how o

Vivek Palaniappan 637 Jan 04, 2023
Camera ready code repo for the NeuRIPS 2021 paper: "Impression learning: Online representation learning with synaptic plasticity".

Impression-Learning-Camera-Ready Camera ready code repo for the NeuRIPS 2021 paper: "Impression learning: Online representation learning with synaptic

2 Feb 09, 2022
[3DV 2021] A Dataset-Dispersion Perspective on Reconstruction Versus Recognition in Single-View 3D Reconstruction Networks

dispersion-score Official implementation of 3DV 2021 Paper A Dataset-dispersion Perspective on Reconstruction versus Recognition in Single-view 3D Rec

Yefan 7 May 28, 2022
Bootstrapped Representation Learning on Graphs

Bootstrapped Representation Learning on Graphs This is the PyTorch implementation of BGRL Bootstrapped Representation Learning on Graphs The main scri

NerDS Lab :: Neural Data Science Lab 55 Jan 07, 2023
RRxIO - Robust Radar Visual/Thermal Inertial Odometry: Robust and accurate state estimation even in challenging visual conditions.

RRxIO - Robust Radar Visual/Thermal Inertial Odometry RRxIO offers robust and accurate state estimation even in challenging visual conditions. RRxIO c

Christopher Doer 64 Dec 29, 2022
Official PyTorch code of DeepPanoContext: Panoramic 3D Scene Understanding with Holistic Scene Context Graph and Relation-based Optimization (ICCV 2021 Oral).

DeepPanoContext (DPC) [Project Page (with interactive results)][Paper] DeepPanoContext: Panoramic 3D Scene Understanding with Holistic Scene Context G

Cheng Zhang 66 Nov 16, 2022
GNN-based Recommendation Benchma

GRecX A Fair Benchmark for GNN-based Recommendation Preliminary Comparison DiffNet-Yelp dataset (featureless) Algo 73 Oct 17, 2022

Face Alignment using python

Face Alignment Face Alignment using python Input Image Aligned Face Aligned Face Aligned Face Input Image Aligned Face Input Image Aligned Face Instal

Sajjad Aemmi 28 Nov 23, 2022
Code for paper ECCV 2020 paper: Who Left the Dogs Out? 3D Animal Reconstruction with Expectation Maximization in the Loop.

Who Left the Dogs Out? Evaluation and demo code for our ECCV 2020 paper: Who Left the Dogs Out? 3D Animal Reconstruction with Expectation Maximization

Benjamin Biggs 29 Dec 28, 2022
Deep Markov Factor Analysis (NeurIPS2021)

Deep Markov Factor Analysis (DMFA) Codes and experiments for deep Markov factor analysis (DMFA) model accepted for publication at NeurIPS2021: A. Farn

Sarah Ostadabbas 2 Dec 16, 2022