Code for the Higgs Boson Machine Learning Challenge organised by CERN & EPFL

Overview

A method to solve the Higgs boson challenge using Least Squares - Novae

This project is the Project 1 of EPFL CS-433 Machine Learning. The project is the same as the Higgs Boson Machine Learning Challenge posted on Kaggle. The dataset and the detailed description can also be found in the GitHub repository of the course.

Team name: Novae

Team members: Giacomo Orsi, Vittorio Rossi, Chun-Tso Tsai

About the Project

The task of this project is to train a model based on the provided train.csv to have the best prediction on the data given in test.csv or any other general case.

We built our model for the problem using regularized linear regression after applying some data cleaning and features engineering techniques. A report describing our approach and our results can be found in the file report.pdf. In the end, we obtained an accuracy of 0.836 and an F1 score of 0.751 on the test.csv dataset.

Instructions

  • The project runs under Python 3.8 and requires NumPy=1.19.
  • Please make sure to place train.csv and test.csv inside the data folder. Those files can be downloaded here.
  • Go to the script/ folder and execute run.py. A model will be trained with the given hyper-parameters and predictions for the test dataset will be outputed in the file out.csv.

Modules

implementations.py

Contains the implementations of different learning algorithms. Including

  • Least squares linear regression
    • least_squares: Direct computation from linear equations.
    • least_squares_GD: Gradient descent.
    • least_squares_SGD: Stochastic gradient descent.
    • ridge_regression: Regularized linear regression from direct computation.
  • Logistic regression
    • logistic_regression: Gradient descent
    • reg_logistic_regression: Gradient descent with regularization.

There are also some helper functions in this file to facilitate the above functions.

data_processing.py

Calls the following files to process the data.

  • data_cleaning.py: Contains functions used to
    1. Categorize data into subgroups.
    2. Replace missing values with the median.
    3. Standardize the features.
  • feature_engineering.py: Contains functions used to generate our interpretable features.

run.py

Generates the submission .csv file based on the data of test.csv stored in the folder data/. Our optimized model is also defined in this file.

Some helper Functions

  • models.py: Create the models for predicting the labels for new data points without true labels.
  • expansions.py: Contains a function to apply polynomial expansion to our features to add extra degrees of freedom for our models.
  • proj1_helpers.py: Contains functions which loads the .csv files as training or testing data, and create the .csv file for submission.
  • cross_validation.py: Contains a function to build the index for k-fold cross_validation.
  • disk_helper.py: Save/load the NumPy array to disk for further usage. Useful for saving hyper-parameters when trying a long training process.

Notebook

It is possible to use the Jupyter notebook project_notebook.ipynb located in the scripts folder to train the best hyper-parameters for the model. In the notebook it is possible to cross-validate a logistic and a least square regression model over given lambdas and degrees.

Owner
Giacomo Orsi
CS Student at EPFL. Previously at University of Bologna
Giacomo Orsi
ManimML is a project focused on providing animations and visualizations of common machine learning concepts with the Manim Community Library.

ManimML ManimML is a project focused on providing animations and visualizations of common machine learning concepts with the Manim Community Library.

259 Jan 04, 2023
This computer program provides a reference implementation of Lagrangian Monte Carlo in metric induced by the Monge patch

This computer program provides a reference implementation of Lagrangian Monte Carlo in metric induced by the Monge patch. The code was prepared to the final version of the accepted manuscript in AIST

Marcelo Hartmann 2 May 06, 2022
ESGD-M - A stochastic non-convex second order optimizer, suitable for training deep learning models, for PyTorch

ESGD-M - A stochastic non-convex second order optimizer, suitable for training deep learning models, for PyTorch

Katherine Crowson 53 Dec 29, 2022
Pytorch ImageNet1k Loader with Bounding Boxes.

ImageNet 1K Bounding Boxes For some experiments, you might wanna pass only the background of imagenet images vs passing only the foreground. Here, I'v

Amin Ghiasi 11 Oct 15, 2022
PyTorch code for EMNLP 2021 paper: Don't be Contradicted with Anything! CI-ToD: Towards Benchmarking Consistency for Task-oriented Dialogue System

PyTorch code for EMNLP 2021 paper: Don't be Contradicted with Anything! CI-ToD: Towards Benchmarking Consistency for Task-oriented Dialogue System

Libo Qin 25 Sep 06, 2022
LUKE -- Language Understanding with Knowledge-based Embeddings

LUKE (Language Understanding with Knowledge-based Embeddings) is a new pre-trained contextualized representation of words and entities based on transf

Studio Ousia 587 Dec 30, 2022
Godot RL Agents is a fully Open Source packages that allows video game creators

Godot RL Agents The Godot RL Agents is a fully Open Source packages that allows video game creators, AI researchers and hobbiest the opportunity to le

Edward Beeching 326 Dec 30, 2022
Office source code of paper UniFuse: Unidirectional Fusion for 360$^\circ$ Panorama Depth Estimation

UniFuse (RAL+ICRA2021) Office source code of paper UniFuse: Unidirectional Fusion for 360$^\circ$ Panorama Depth Estimation, arXiv, Demo Preparation I

Alibaba 47 Dec 26, 2022
Official implementation of "Towards Good Practices for Efficiently Annotating Large-Scale Image Classification Datasets" (CVPR2021)

Towards Good Practices for Efficiently Annotating Large-Scale Image Classification Datasets This is the official implementation of "Towards Good Pract

Sanja Fidler's Lab 52 Nov 22, 2022
Styled Augmented Translation

SAT Style Augmented Translation Introduction By collecting high-quality data, we were able to train a model that outperforms Google Translate on 6 dif

139 Dec 29, 2022
*ObjDetApp* deploys a pytorch model for object detection

*ObjDetApp* deploys a pytorch model for object detection

Will Chao 1 Dec 26, 2021
ShapeGlot: Learning Language for Shape Differentiation

ShapeGlot: Learning Language for Shape Differentiation Created by Panos Achlioptas, Judy Fan, Robert X.D. Hawkins, Noah D. Goodman, Leonidas J. Guibas

Panos 32 Dec 23, 2022
BirdCLEF 2021 - Birdcall Identification 4th place solution

BirdCLEF 2021 - Birdcall Identification 4th place solution My solution detail kaggle discussion Inference Notebook (best submission) Environment Use K

tattaka 42 Jan 02, 2023
DCSL - Generalizable Crowd Counting via Diverse Context Style Learning

DCSL Generalizable Crowd Counting via Diverse Context Style Learning Requirement

3 Jun 13, 2022
PyTorch implementations of the beta divergence loss.

Beta Divergence Loss - PyTorch Implementation This repository contains code for a PyTorch implementation of the beta divergence loss. Dependencies Thi

Billy Carson 7 Nov 09, 2022
Official implementation of NLOS-OT: Passive Non-Line-of-Sight Imaging Using Optimal Transport (IEEE TIP, accepted)

NLOS-OT Official implementation of NLOS-OT: Passive Non-Line-of-Sight Imaging Using Optimal Transport (IEEE TIP, accepted) Description In this reposit

Ruixu Geng(耿瑞旭) 16 Dec 16, 2022
Ray tracing of a Schwarzschild black hole written entirely in TensorFlow.

TensorGeodesic Ray tracing of a Schwarzschild black hole written entirely in TensorFlow. Dependencies: Python 3 TensorFlow 2.x numpy matplotlib About

5 Jan 15, 2022
Deep Learning GPU Training System

DIGITS DIGITS (the Deep Learning GPU Training System) is a webapp for training deep learning models. The currently supported frameworks are: Caffe, To

NVIDIA Corporation 4.1k Jan 03, 2023
A Python toolbox to create adversarial examples that fool neural networks in PyTorch, TensorFlow, and JAX

Foolbox Native: Fast adversarial attacks to benchmark the robustness of machine learning models in PyTorch, TensorFlow, and JAX Foolbox is a Python li

Bethge Lab 2.4k Dec 25, 2022
Code of the paper "Multi-Task Meta-Learning Modification with Stochastic Approximation".

Multi-Task Meta-Learning Modification with Stochastic Approximation This repository contains the code for the paper "Multi-Task Meta-Learning Modifica

Andrew 3 Jan 05, 2022