LeafSnap replicated using deep neural networks to test accuracy compared to traditional computer vision methods.

Overview

Deep-Leafsnap

Convolutional Neural Networks have become largely popular in image tasks such as image classification recently largely due to to Krizhevsky, et al. in their famous paper ImageNet Classification with Deep Convolutional Neural Networks. Famous models such as AlexNet, VGG-16, ResNet-50, etc. have scored state of the art results on image classfication datasets such as ImageNet and CIFAR-10.

We present an application of CNN's to the task of classifying trees by images of their leaves; specifically all 185 types of trees in the United States. This task proves to be difficult for traditional computer vision methods due to the high number of classes, inconsistency in images, and large visual similarity between leaves.

Kumar, et al. developed a automatic visual recognition algorithm in their 2012 paper Leafsnap: A Computer Vision System for Automatic Plant Species Identification to attempt to solve this problem.

Our model is based off VGG-16 except modified to work with 64x64 size inputs. We achieved state of the art results at the time. Our deep learning approach to this problem further improves the accuracy from 70.8% to 86.2% for the top-1 prediction accuracy and from 96.8% to 98.4% for top-5 prediction accuracy.

Top-1 Accuracy Top-5 Accuracy
Leafsnap 70.8% 96.8%
Deep-Leafsnap 86.2% 98.4%

We noticed that our model failed to recognize specific classes of trees constantly causing our overall accuracy to derease. This is primarily due to the fact that those trees had very small leaves which were hard to preprocess and crop. Our training images were also resized to 64x64 due to limited computational resources. We plan on further improving our data preprocessing and increasing our image size to 224x224 in order to exceed 90% for our top-1 prediction acurracy.

The following goes over the code and how to set it up on your own machine.

Files

  • model.py trains a convolutional neural network on the dataset.
  • vgg.py PyTorch model code for VGG-16.
  • densenet.py PyTorch model code for DenseNet-121.
  • resnet.py PyTorch model code for ResNet.
  • dataset.py creates a new train/test dataset by cropping the leaf and augmenting the data.
  • utils.py helps do some of the hardcore image processing in dataset.py.
  • averagemeter.py helper class which keeps track of a bunch of averages when training.
  • leafsnap-dataset-images.csv is the CSV file corresponding to the dataset.
  • requirements.txt contains the pip requirements to run the code.

Installation

To run the models and code make sure you Python installed.

Install PyTorch by following the directions here.

Clone the repo onto your local machine and cd into the directory.

git clone https://github.com/sujithv28/Deep-Leafsnap.git
cd Deep-Leafsnap

Install all the python dependencies:

pip install -r requirements.txt

Make sure sklearn is updated to the latest version.

pip install --upgrade sklearn

Also make sure you have OpenCV installed either through pip or homebrew. You can check if this works by running and making sure nothing complains:

python
import cv2

Download Leafsnap's image data and extract it to the main directory by running in the directory. Original data can be found here.

wget https://www.dropbox.com/s/dp3sk8wpiu9yszg/data.zip?dl=0
unzip -a data.zip?dl=0
rm data.zip?dl=0

Create the Training and Testing Data

To create the dataset, run

python dataset.py

This cleans the dataset by cropping only neccesary portions of the images containing the leaves and also resizes them to 64x64. If you want to change the image size go to utils.py and change img = misc.imresize(img, (64,64))to any size you want.

Training Model

To train the model, run

python model.py
Owner
Sujith Vishwajith
Computer Science & Math @ University of Maryland
Sujith Vishwajith
TensorFlow implementation of "Variational Inference with Normalizing Flows"

[TensorFlow 2] Variational Inference with Normalizing Flows TensorFlow implementation of "Variational Inference with Normalizing Flows" [1] Concept Co

YeongHyeon Park 7 Jun 08, 2022
Cobalt Strike teamserver detection.

Cobalt-Strike-det Cobalt Strike teamserver detection. usage: cobaltstrike_verify.py [-l TARGETS] [-t THREADS] optional arguments: -h, --help show this

TimWhite 17 Sep 27, 2022
Yolov5+SlowFast: Realtime Action Detection Based on PytorchVideo

Yolov5+SlowFast: Realtime Action Detection A realtime action detection frame work based on PytorchVideo. Here are some details about our modification:

WuFan 181 Dec 30, 2022
Code for "Learning Canonical Representations for Scene Graph to Image Generation", Herzig & Bar et al., ECCV2020

Learning Canonical Representations for Scene Graph to Image Generation (ECCV 2020) Roei Herzig*, Amir Bar*, Huijuan Xu, Gal Chechik, Trevor Darrell, A

roei_herzig 24 Jul 07, 2022
Multi-Task Learning as a Bargaining Game

Nash-MTL Official implementation of "Multi-Task Learning as a Bargaining Game". Setup environment conda create -n nashmtl python=3.9.7 conda activate

Aviv Navon 87 Dec 26, 2022
pytorch, hand(object) detect ,yolo v5,手检测

YOLO V5 物体检测,包括手部检测。 项目介绍 手部检测 手部检测示例如下 : 视频示例: 项目配置 作者开发环境: Python 3.7 PyTorch = 1.5.1 数据集 手部检测数据集 该项目数据集采用 TV-Hand 和 COCO-Hand (COCO-Hand-Big 部分) 进

Eric.Lee 11 Dec 20, 2022
Self-Supervised Multi-Frame Monocular Scene Flow (CVPR 2021)

Self-Supervised Multi-Frame Monocular Scene Flow 3D visualization of estimated depth and scene flow (overlayed with input image) from temporally conse

Visual Inference Lab @TU Darmstadt 85 Dec 22, 2022
A simple, clean TensorFlow implementation of Generative Adversarial Networks with a focus on modeling illustrations.

IllustrationGAN A simple, clean TensorFlow implementation of Generative Adversarial Networks with a focus on modeling illustrations. Generated Images

268 Nov 27, 2022
LETR: Line Segment Detection Using Transformers without Edges

LETR: Line Segment Detection Using Transformers without Edges Introduction This repository contains the official code and pretrained models for Line S

mlpc-ucsd 157 Jan 06, 2023
Motion Planner Augmented Reinforcement Learning for Robot Manipulation in Obstructed Environments (CoRL 2020)

Motion Planner Augmented Reinforcement Learning for Robot Manipulation in Obstructed Environments [Project website] [Paper] This project is a PyTorch

Cognitive Learning for Vision and Robotics (CLVR) lab @ USC 49 Nov 28, 2022
Advancing Self-supervised Monocular Depth Learning with Sparse LiDAR

Official implementation for paper "Advancing Self-supervised Monocular Depth Learning with Sparse LiDAR"

Ziyue Feng 72 Dec 09, 2022
Keras-1D-ACGAN-Data-Augmentation

Keras-1D-ACGAN-Data-Augmentation What is the ACGAN(Auxiliary Classifier GANs) ? Related Paper : [Abstract : Synthesizing high resolution photorealisti

Jae-Hoon Shim 7 Dec 23, 2022
Official Pytorch implementation of "Unbiased Classification Through Bias-Contrastive and Bias-Balanced Learning (NeurIPS 2021)

Unbiased Classification Through Bias-Contrastive and Bias-Balanced Learning (NeurIPS 2021) Official Pytorch implementation of Unbiased Classification

Youngkyu 17 Jan 01, 2023
SegNet model implemented using keras framework

keras-segnet Implementation of SegNet-like architecture using keras. Current version doesn't support index transferring proposed in SegNet article, so

185 Aug 30, 2022
Setup and customize deep learning environment in seconds.

Deepo is a series of Docker images that allows you to quickly set up your deep learning research environment supports almost all commonly used deep le

Ming 6.3k Jan 06, 2023
A small library for doing fluid simulation with neural networks.

Neural Fluid Fields This is a small library for doing fluid simulation with neural fields. Check out our review paper, Neural Fields in Visual Computi

Towaki 23 Jun 23, 2022
Official PyTorch implementation of the paper "Deep Constrained Least Squares for Blind Image Super-Resolution", CVPR 2022.

Deep Constrained Least Squares for Blind Image Super-Resolution [Paper] This is the official implementation of 'Deep Constrained Least Squares for Bli

MEGVII Research 141 Dec 30, 2022
Two-stage CenterNet

Probabilistic two-stage detection Two-stage object detectors that use class-agnostic one-stage detectors as the proposal network. Probabilistic two-st

Xingyi Zhou 1.1k Jan 03, 2023
[WWW 2021] Source code for "Graph Contrastive Learning with Adaptive Augmentation"

GCA Source code for Graph Contrastive Learning with Adaptive Augmentation (WWW 2021) For example, to run GCA-Degree under WikiCS, execute: python trai

Big Data and Multi-modal Computing Group, CRIPAC 97 Jan 07, 2023
Quickly and easily create / train a custom DeepDream model

Dream-Creator This project aims to simplify the process of creating a custom DeepDream model by using pretrained GoogleNet models and custom image dat

55 Dec 27, 2022