OpenAi's gym environment wrapper to vectorize them with Ray

Overview

Ray Vector Environment Wrapper

You would like to use Ray to vectorize your environment but you don't want to use RLLib ?
You came to the right place !

This package allows you to parallelize your environment using Ray
Not only does it allows to run environments in parallel, but it also permits to run multiple sequential environments on each worker
For example, you can run 80 workers in parallel, each running 10 sequential environments for a total of 80 * 10 environments
This can be useful if your environment is fast and simply running 1 environment per worker leads to too much communication overhead between workers

Installation

pip install RayEnvWrapper

If something went wrong, it most certainly is because of Ray
For example, you might have issue installing Ray on Apple Silicon (i.e., M1) laptop. See Ray's documentation for a simple fix
At the moment Ray does not support Python 3.10. This package has been tested with Python 3.9.

How does it work?

You first need to define a function that seed and return your environment:

Here is an example for CartPole:

import gym

def make_and_seed(seed: int) -> gym.Env:
    env = gym.make('CartPole-v0')
    env = gym.wrappers.RecordEpisodeStatistics(env) # you can put extra wrapper to your original environment
    env.seed(seed)
    return env

Note: If you don't want to seed your environment, simply return it without using the seed, but the function you define needs to take a number as an input

Then, call the wrapper to create and wrap all the vectorized environment:

from RayEnvWrapper import WrapperRayVecEnv

number_of_workers = 4 # Usually, this is set to the number of CPUs in your machine
envs_per_worker = 2

vec_env = WrapperRayVecEnv(make_and_seed, number_of_workers, envs_per_worker)

You can then use your environment. All the output for each of the environments are stacked in a numpy array

Reset:

vec_env.reset()

Output

[[ 0.03073904  0.00145001 -0.03088818 -0.03131252]
 [ 0.03073904  0.00145001 -0.03088818 -0.03131252]
 [ 0.02281231 -0.02475473  0.02306162  0.02072129]
 [ 0.02281231 -0.02475473  0.02306162  0.02072129]
 [-0.03742824 -0.02316945  0.0148571   0.0296055 ]
 [-0.03742824 -0.02316945  0.0148571   0.0296055 ]
 [-0.0224773   0.04186813 -0.01038048  0.03759079]
 [-0.0224773   0.04186813 -0.01038048  0.03759079]]

The i-th entry represent the initial observation of the i-th environment
Note: As environments are vectorized, you don't need explicitly to reset the environment at the end of the episode, it is done automatically However, you need to do it once at the beginning

Take a random action:

vec_env.step([vec_env.action_space.sample() for _ in range(number_of_workers * envs_per_worker)])

Notice how the actions are passed. We pass an array containing an action for each of the environments
Thus, the array is of size number_of_workers * envs_per_worker (i.e., the total number of environments)

Output

(array([[ 0.03076804, -0.19321568, -0.03151444,  0.25146705],
       [ 0.03076804, -0.19321568, -0.03151444,  0.25146705],
       [ 0.02231721, -0.22019969,  0.02347605,  0.3205903 ],
       [ 0.02231721, -0.22019969,  0.02347605,  0.3205903 ],
       [-0.03789163, -0.21850128,  0.01544921,  0.32693872],
       [-0.03789163, -0.21850128,  0.01544921,  0.32693872],
       [-0.02163994, -0.15310344, -0.00962866,  0.3269806 ],
       [-0.02163994, -0.15310344, -0.00962866,  0.3269806 ]],
      dtype=float32), 
 array([1., 1., 1., 1., 1., 1., 1., 1.], dtype=float32), 
 array([False, False, False, False, False, False, False, False]), 
 [{}, {}, {}, {}, {}, {}, {}, {}])

As usual, the step method returns a tuple, except that here both the observation, reward, dones and infos are concatenated
In this specific example, we have 2 environments per worker.
Index 0 and 1 are environments from worker 1; index 1 and 2 are environments from worker 2, etc.

License

Apache License 2.0

You might also like...
A
A "gym" style toolkit for building lightweight Neural Architecture Search systems

A "gym" style toolkit for building lightweight Neural Architecture Search systems

Customizable RecSys Simulator for OpenAI Gym
Customizable RecSys Simulator for OpenAI Gym

gym-recsys: Customizable RecSys Simulator for OpenAI Gym Installation | How to use | Examples | Citation This package describes an OpenAI Gym interfac

Robot Servers and Server Manager software for robo-gym

robo-gym-server-modules Robot Servers and Server Manager software for robo-gym. For info on how to use this package please visit the robo-gym website

Deep Q Learning with OpenAI Gym and Pokemon Showdown

pokemon-deep-learning An openAI gym project for pokemon involving deep q learning. Made by myself, Sam Little, and Layton Webber. This code captures g

Manipulation OpenAI Gym environments to simulate robots at the STARS lab

Manipulator Learning This repository contains a set of manipulation environments that are compatible with OpenAI Gym and simulated in pybullet. In par

AI virtual gym is an AI program which can be used to exercise and can be used to see if we are doing the exercises

AI virtual gym is an AI program which can be used to exercise and can be used to see if we are doing the exercises

Multi-objective gym environments for reinforcement learning.
Multi-objective gym environments for reinforcement learning.

MO-Gym: Multi-Objective Reinforcement Learning Environments Gym environments for multi-objective reinforcement learning (MORL). The environments follo

Pytorch Lightning Distributed Accelerators using Ray

Distributed PyTorch Lightning Training on Ray This library adds new PyTorch Lightning accelerators for distributed training using the Ray distributed

Pytorch Lightning Distributed Accelerators using Ray

Distributed PyTorch Lightning Training on Ray This library adds new PyTorch Lightning plugins for distributed training using the Ray distributed compu

Comments
  • envs_per_worker

    envs_per_worker

    Hi!@ingambe. Thank you very much for your work! I have some questions. What does the "worker and envs" mean here? My understanding is as follows:

    • Worker represents a process. Two env in a worker belong to two threads.

    I don't know if I understand this correctly. Thanks! image

    opened by Meta-YZ 2
  • how to wrap two DIFFERENT environments?

    how to wrap two DIFFERENT environments?

    Thank you for upload the package. My question is is there a way to stack different environments together? For example I have ten or hundreds different race track environments and I want to train an agent simultaneously drive through this vectorized environment. In stable baseline I can stack them together and train a vectorized environment. Now I want to move to ray and try to speed up the training by using multiple gpu...but so far didn't figure out how to do this. Thanks in advance

    enhancement 
    opened by superfan123 1
Releases(v1.0)
Owner
Pierre TASSEL
Pierre TASSEL
Official code of Team Yao at Multi-Modal-Fact-Verification-2022

Official code of Team Yao at Multi-Modal-Fact-Verification-2022 A Multi-Modal Fact Verification dataset released as part of the De-Factify workshop in

Wei-Yao Wang 11 Nov 15, 2022
Uni-Fold: Training your own deep protein-folding models

Uni-Fold: Training your own deep protein-folding models. This package provides an implementation of a trainable, Transformer-based deep protein foldin

DP Technology 187 Jan 04, 2023
Efficient 6-DoF Grasp Generation in Cluttered Scenes

Contact-GraspNet Contact-GraspNet: Efficient 6-DoF Grasp Generation in Cluttered Scenes Martin Sundermeyer, Arsalan Mousavian, Rudolph Triebel, Dieter

NVIDIA Research Projects 148 Dec 28, 2022
Centroid-UNet is deep neural network model to detect centroids from satellite images.

Centroid UNet - Locating Object Centroids in Aerial/Serial Images Introduction Centroid-UNet is deep neural network model to detect centroids from Aer

GIC-AIT 19 Dec 08, 2022
ONNX Command-Line Toolbox

ONNX Command Line Toolbox Aims to improve your experience of investigating ONNX models. Use it like onnx infershape /path/to/model.onnx. (See the usag

黎明灰烬 (王振华 Zhenhua WANG) 23 Nov 13, 2022
Neural Scene Flow Fields using pytorch-lightning, with potential improvements

nsff_pl Neural Scene Flow Fields using pytorch-lightning. This repo reimplements the NSFF idea, but modifies several operations based on observation o

AI葵 178 Dec 21, 2022
[NeurIPS 2021] Source code for the paper "Qu-ANTI-zation: Exploiting Neural Network Quantization for Achieving Adversarial Outcomes"

Qu-ANTI-zation This repository contains the code for reproducing the results of our paper: Qu-ANTI-zation: Exploiting Quantization Artifacts for Achie

Secure AI Systems Lab 8 Mar 26, 2022
Does Pretraining for Summarization Reuqire Knowledge Transfer?

Pretraining summarization models using a corpus of nonsense

Approximately Correct Machine Intelligence (ACMI) Lab 12 Dec 19, 2022
Official Pytorch implementation of MixMo framework

MixMo: Mixing Multiple Inputs for Multiple Outputs via Deep Subnetworks Official PyTorch implementation of the MixMo framework | paper | docs Alexandr

79 Nov 07, 2022
Submodular Subset Selection for Active Domain Adaptation (ICCV 2021)

S3VAADA: Submodular Subset Selection for Virtual Adversarial Active Domain Adaptation ICCV 2021 Harsh Rangwani, Arihant Jain*, Sumukh K Aithal*, R. Ve

Video Analytics Lab -- IISc 13 Dec 28, 2022
AEI: Actors-Environment Interaction with Adaptive Attention for Temporal Action Proposals Generation

AEI: Actors-Environment Interaction with Adaptive Attention for Temporal Action Proposals Generation A pytorch-version implementation codes of paper:

11 Dec 13, 2022
Bulk2Space is a spatial deconvolution method based on deep learning frameworks

Bulk2Space Spatially resolved single-cell deconvolution of bulk transcriptomes using Bulk2Space Bulk2Space is a spatial deconvolution method based on

Dr. FAN, Xiaohui 60 Dec 27, 2022
GANfolk: Using AI to create portraits of fictional people to sell as NFTs

GANfolk are AI-generated renderings of fictional people. Each image in the collection was created by a pair of Generative Adversarial Networks (GANs) with names and backstories also created with AI.

Robert A. Gonsalves 32 Dec 02, 2022
SIEM Logstash parsing for more than hundred technologies

LogIndexer Pipeline Logstash Parsing Configurations for Elastisearch SIEM and OpenDistro for Elasticsearch SIEM Why this project exists The overhead o

146 Dec 29, 2022
Repository for self-supervised landmark discovery

self-supervised-landmarks Repository for self-supervised landmark discovery Requirements pytorch pynrrd (for 3d images) Usage The use of this models i

Riddhish Bhalodia 2 Apr 18, 2022
A graph adversarial learning toolbox based on PyTorch and DGL.

GraphWar: Arms Race in Graph Adversarial Learning NOTE: GraphWar is still in the early stages and the API will likely continue to change. 🚀 Installat

Jintang Li 54 Jan 05, 2023
clustimage is a python package for unsupervised clustering of images.

clustimage The aim of clustimage is to detect natural groups or clusters of images. Image recognition is a computer vision task for identifying and ve

Erdogan Taskesen 52 Jan 02, 2023
Accurate 3D Face Reconstruction with Weakly-Supervised Learning: From Single Image to Image Set (CVPRW 2019). A PyTorch implementation.

Accurate 3D Face Reconstruction with Weakly-Supervised Learning: From Single Image to Image Set —— PyTorch implementation This is an unofficial offici

Sicheng Xu 833 Dec 28, 2022
Code for the TPAMI paper: "Syntax Customized Video Captioning by Imitating Exemplar Sentences"

Syntax-Customized-Video-Captioning Code for the TPAMI paper: "Syntax Customized Video Captioning by Imitating Exemplar Sentences". This is my second w

3 Dec 05, 2022
Apache Flink

Apache Flink Apache Flink is an open source stream processing framework with powerful stream- and batch-processing capabilities. Learn more about Flin

The Apache Software Foundation 20.4k Dec 30, 2022