Code for the paper: "On the Bottleneck of Graph Neural Networks and Its Practical Implications"

Overview

On the Bottleneck of Graph Neural Networks and its Practical Implications

This is the official implementation of the paper: On the Bottleneck of Graph Neural Networks and its Practical Implications (ICLR'2021).

By Uri Alon and Eran Yahav. See also the [video], [poster] and [slides].

this repository is divided into three sub-projects:

  1. The subdirectory tf-gnn-samples is a clone of https://github.com/microsoft/tf-gnn-samples by Brockschmidt (ICML'2020). This project can be used to reproduce the QM9 and VarMisuse experiments of Section 4.2 and 4.2 in the paper. This sub-project depends on TensorFlow 1.13. The instructions for our clone are the same as their original code, except that reproducing our experiments (the QM9 dataset and VarMisuse) can be done by running the script tf-gnn-samples/run_qm9_benchs_fa.py or tf-gnn-samples/run_varmisuse_benchs_fa.py instead of their original scripts. For additional dependencies and instructions, see their original README: https://github.com/microsoft/tf-gnn-samples/blob/master/README.md. The main modification that we performed is using a Fully-Adjacent layer as the last GNN layer and we describe in our paper.
  2. The subdirectory gnn-comparison is a clone of https://github.com/diningphil/gnn-comparison by Errica et al. (ICLR'2020). This project can be used to reproduce the biological experiments (Section 4.3, the ENZYMES and NCI1 datasets). This sub-project depends on PyTorch 1.4 and Pytorch-Geometric. For additional dependencies and instructions, see their original README: https://github.com/diningphil/gnn-comparison/blob/master/README.md. The instructions for our clone are the same, except that we added an additional flag to every config_*.yml file, called last_layer_fa, which is set to True by default, and reproduces our experiments. The main modification that we performed is using a Fully-Adjacent layer as the last GNN layer.
  3. The main directory (in which this file resides) can be used to reproduce the experiments of Section 4.1 in the paper, for the "Tree-NeighborsMatch" problem. The rest of this README file includes the instructions for this main directory. This repository can be used to reproduce the experiments of

This project was designed to be useful in experimenting with new GNN architectures and new solutions for the over-squashing problem.

Feel free to open an issue with any questions.

The Tree-NeighborsMatch problem

alt text

Requirements

Dependencies

This project is based on PyTorch 1.4.0 and the PyTorch Geometric library.

pip install -r requirements.txt

The requirements.txt file lists the additional requirements. However, PyTorch Geometric might requires manual installation, and we thus recommend to use the requirements.txt file only afterward.

Verify that importing the dependencies goes without errors:

python -c 'import torch; import torch_geometric'

Hardware

Training on large trees (depth=8) might require ~60GB of RAM and about 10GB of GPU memory. GPU memory can be compromised by using a smaller batch size and using the --accum_grad flag.

For example, instead of running:

python main.py --batch_size 1024 --type GGNN

The following uses gradient accumulation, and takes less GPU memory:

python main.py --batch_size 512 --accum_grad 2 --type GGNN

Reproducing Experiments

To run a single experiment from the paper, run:

python main.py --help

And see the available flags. For example, to train a GGNN with depth=4, run:

python main.py --task DICTIONARY --eval_every 1000 --depth 4 --num_layers 5 --batch_size 1024 --type GGNN

To train a GNN across all depths, run one of the following:

python run-gcn-2-8.py
python run-gat-2-8.py
python run-ggnn-2-8.py
python run-gin-2-8.py

Results

The results of running the above scripts are (Section 4.1 in the paper):

alt text

r: 2 3 4 5 6 7 8
GGNN 1.0 1.0 1.0 0.60 0.38 0.21 0.16
GAT 1.0 1.0 1.0 0.41 0.21 0.15 0.11
GIN 1.0 1.0 0.77 0.29 0.20
GCN 1.0 1.0 0.70 0.19 0.14 0.09 0.08

Experiment with other GNN types

To experiment with other GNN types:

  • Add the new GNN type to the GNN_TYPE enum here, for example: MY_NEW_TYPE = auto()
  • Add another elif self is GNN_TYPE.MY_NEW_TYPE: to instantiate the new GNN type object here
  • Use the new type as a flag for the main.py file:
python main.py --type MY_NEW_TYPE ...

Citation

If you want to cite this work, please use this bibtex entry:

@inproceedings{
    alon2021on,
    title={On the Bottleneck of Graph Neural Networks and its Practical Implications},
    author={Uri Alon and Eran Yahav},
    booktitle={International Conference on Learning Representations},
    year={2021},
    url={https://openreview.net/forum?id=i80OPhOCVH2}
}
PyTorch ,ONNX and TensorRT implementation of YOLOv4

PyTorch ,ONNX and TensorRT implementation of YOLOv4

4.2k Jan 01, 2023
Semi-Supervised Signed Clustering Graph Neural Network (and Implementation of Some Spectral Methods)

SSSNET SSSNET: Semi-Supervised Signed Network Clustering For details, please read our paper. Environment Setup Overview The project has been tested on

Yixuan He 9 Nov 24, 2022
Selfplay In MultiPlayer Environments

This project allows you to train AI agents on custom-built multiplayer environments, through self-play reinforcement learning.

200 Jan 08, 2023
Torch Implementation of "Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network"

Photo-Realistic-Super-Resoluton Torch Implementation of "Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network" [Paper]

Harry Yang 199 Dec 01, 2022
GUPNet - Geometry Uncertainty Projection Network for Monocular 3D Object Detection

GUPNet This is the official implementation of "Geometry Uncertainty Projection Network for Monocular 3D Object Detection". citation If you find our wo

Yan Lu 103 Dec 28, 2022
Optimizing DR with hard negatives and achieving SOTA first-stage retrieval performance on TREC DL Track (SIGIR 2021 Full Paper).

Optimizing Dense Retrieval Model Training with Hard Negatives Jingtao Zhan, Jiaxin Mao, Yiqun Liu, Jiafeng Guo, Min Zhang, Shaoping Ma 🔥 News 2021-10

Jingtao Zhan 99 Dec 27, 2022
Trading Gym is an open source project for the development of reinforcement learning algorithms in the context of trading.

Trading Gym Trading Gym is an open-source project for the development of reinforcement learning algorithms in the context of trading. It is currently

Dimitry Foures 535 Nov 15, 2022
A curated list of resources for Image and Video Deblurring

A curated list of resources for Image and Video Deblurring

Subeesh Vasu 1.7k Jan 01, 2023
✂️ EyeLipCropper is a Python tool to crop eyes and mouth ROIs of the given video.

EyeLipCropper EyeLipCropper is a Python tool to crop eyes and mouth ROIs of the given video. The whole process consists of three parts: frame extracti

Zi-Han Liu 9 Oct 25, 2022
Original code for "Zero-Shot Domain Adaptation with a Physics Prior"

Zero-Shot Domain Adaptation with a Physics Prior [arXiv] [sup. material] - ICCV 2021 Oral paper, by Attila Lengyel, Sourav Garg, Michael Milford and J

Attila Lengyel 40 Dec 21, 2022
A NSFW content filter.

Project_Nfilter A NSFW content filter. With a motive of minimizing the spreads and leakage of NSFW contents on internet and access to others devices ,

1 Jan 20, 2022
Keras implementation of Deeplab v3+ with pretrained weights

Keras implementation of Deeplabv3+ This repo is not longer maintained. I won't respond to issues but will merge PR DeepLab is a state-of-art deep lear

1.3k Dec 07, 2022
Official repo for BMVC2021 paper ASFormer: Transformer for Action Segmentation

ASFormer: Transformer for Action Segmentation This repo provides training & inference code for BMVC 2021 paper: ASFormer: Transformer for Action Segme

42 Dec 23, 2022
Attack on Confidence Estimation algorithm from the paper "Disrupting Deep Uncertainty Estimation Without Harming Accuracy"

Attack on Confidence Estimation (ACE) This repository is the official implementation of "Disrupting Deep Uncertainty Estimation Without Harming Accura

3 Mar 30, 2022
Exemplo de implementação do padrão circuit breaker em python

fast-circuit-breaker Circuit breakers existem para permitir que uma parte do seu sistema falhe sem destruir todo seu ecossistema de serviços. Michael

James G Silva 17 Nov 10, 2022
SCALE: Modeling Clothed Humans with a Surface Codec of Articulated Local Elements (CVPR 2021)

SCALE: Modeling Clothed Humans with a Surface Codec of Articulated Local Elements (CVPR 2021) This repository contains the official PyTorch implementa

Qianli Ma 133 Jan 05, 2023
RoIAlign & crop_and_resize for PyTorch

RoIAlign for PyTorch This is a PyTorch version of RoIAlign. This implementation is based on crop_and_resize and supports both forward and backward on

Long Chen 530 Jan 07, 2023
Attentional Focus Modulates Automatic Finger‑tapping Movements

"Attentional Focus Modulates Automatic Finger‑tapping Movements", in Scientific Reports

Xingxun Jiang 1 Dec 02, 2021
[SIGGRAPH 2022 Journal Track] AvatarCLIP: Zero-Shot Text-Driven Generation and Animation of 3D Avatars

AvatarCLIP: Zero-Shot Text-Driven Generation and Animation of 3D Avatars Fangzhou Hong1*  Mingyuan Zhang1*  Liang Pan1  Zhongang Cai1,2,3  Lei Yang2 

Fangzhou Hong 749 Jan 04, 2023