Indices Matter: Learning to Index for Deep Image Matting

Overview

IndexNet Matting

This repository includes the official implementation of IndexNet Matting for deep image matting, presented in our paper:

Indices Matter: Learning to Index for Deep Image Matting

Proc. IEEE/CVF International Conference on Computer Vision (ICCV), 2019

Hao Lu1, Yutong Dai1, Chunhua Shen1, Songcen Xu2

1The University of Adelaide, Australia

2Noah's Ark Lab, Huawei Technologies

Updates

  • 8 June 2020: The journal version of this work has been accepted to TPAMI! We further report many interesting results on other dense prediction tasks and extend our insights on generic upsampling operators.
  • 4 April 2020: Training code is released!
  • 16 Aug 2019: The supplementary material is finalized and released!
  • 5 Aug 2019: Inference code of IndexNet Matting is released!

Highlights

  • Simple and effective: IndexNet Matting only deals with the upsampling stage but exhibits at least 16.1% relative improvements, compared to the Deep Matting baseline;
  • Memory-efficient: IndexNet Matting builds upon MobileNetV2. It can process an image with a resolution up to 1980x1080 on a single GTX 1070;
  • Easy to use: This framework also includes our re-implementation of Deep Matting and the pretrained model presented in the Adobe's CVPR17 paper.

Installation

Our code has been tested on Python 3.6.8/3.7.2 and PyTorch 0.4.1/1.1.0. Please follow the official instructions to configure your environment. See other required packages in requirements.txt.

A Quick Demo

We have included our pretrained model in ./pretrained and several images and trimaps from the Adobe Image Dataset in ./examples. Run the following command for a quick demonstration of IndexNet Matting. The inferred alpha mattes are in the folder ./examples/mattes.

python scripts/demo.py

Prepare Your Data

  1. Please contact Brian Price ([email protected]) requesting for the Adobe Image Matting dataset;
  2. Composite the dataset using provided foreground images, alpha mattes, and background images from the COCO and Pascal VOC datasets. I slightly modified the provided compositon_code.py to improve the efficiency, included in the scripts folder. Note that, since the image resolution is quite high, the dataset will be over 100 GB after composition.
  3. The final path structure used in my code looks like this:
$PATH_TO_DATASET/Combined_Dataset
├──── Training_set
│    ├──── alpha (431 images)
│    ├──── fg (431 images)
│    └──── merged (43100 images)
├──── Test_set
│    ├──── alpha (50 images)
│    ├──── fg (50 images)
│    ├──── merged (1000 images)
│    └──── trimaps (1000 images)

Inference

Run the following command to do inference of IndexNet Matting/Deep Matting on the Adobe Image Matting dataset:

python scripts/demo_indexnet_matting.py

python scripts/demo_deep_matting.py

Please note that:

  • DATA_DIR should be modified to your dataset directory;
  • Images used in Deep Matting has been downsampled by 1/2 to enable the GPU inference. To reproduce the full-resolution results, the inference can be executed on CPU, which takes about 2 days.

Here is the results of IndexNet Matting and our reproduced results of Deep Matting on the Adobe Image Dataset:

Methods Remark #Param. GFLOPs SAD MSE Grad Conn Model
Deep Matting Paper -- -- 54.6 0.017 36.7 55.3 --
Deep Matting Re-implementation 130.55M 32.34 55.8 0.018 34.6 56.8 Google Drive (522MB)
IndexNet Matting Ours 8.15M 6.30 45.8 0.013 25.9 43.7 Included
  • The original paper reported that there were 491 images, but the released dataset only includes 431 images. Among missing images, 38 of them were said double counted, and the other 24 of them were not released. As a result, we at least use 4.87% fewer training data than the original paper. Thus, the small differerce in performance should be normal.
  • The evaluation code (Matlab code implemented by the Deep Image Matting's author) placed in the ./evaluation_code folder is used to report the final performance for a fair comparion. We have also implemented a python version. The numerial difference is subtle.

Training

Run the following command to train IndexNet Matting:

sh train.sh
  • --data-dir should be modified to your dataset directory.
  • I was able to train the model on a single GTX 1080ti (12 GB). The training takes about 5 days. The current bottleneck appears to be the dataloader.

Citation

If you find this work or code useful for your research, please cite:

@inproceedings{hao2019indexnet,
  title={Indices Matter: Learning to Index for Deep Image Matting},
  author={Lu, Hao and Dai, Yutong and Shen, Chunhua and Xu, Songcen},
  booktitle={Proc. IEEE/CVF International Conference on Computer Vision (ICCV)},
  year={2019}
}

@article{hao2020indexnet,
  title={Index Networks},
  author={Lu, Hao and Dai, Yutong and Shen, Chunhua and Xu, Songcen},
  journal={IEEE Transactions on Pattern Analysis and Machine Intelligence},
  year={2020}
}

Permission and Disclaimer

This code is only for non-commercial purposes. As covered by the ADOBE IMAGE DATASET LICENSE AGREEMENT, the trained models included in this repository can only be used/distributed for non-commercial purposes. Anyone who violates this rule will be at his/her own risk.

Owner
Hao Lu
I am currently an Associate Professor with Huazhong University of Science and Technology, China.
Hao Lu
Dataset VSD4K includes 6 popular categories: game, sport, dance, vlog, interview and city.

CaFM-pytorch ICCV ACCEPT Introduction of dataset VSD4K Our dataset VSD4K includes 6 popular categories: game, sport, dance, vlog, interview and city.

96 Jul 05, 2022
Code for 'Self-Guided and Cross-Guided Learning for Few-shot segmentation. (CVPR' 2021)'

SCL Introduction Code for 'Self-Guided and Cross-Guided Learning for Few-shot segmentation. (CVPR' 2021)' We evaluated our approach using two baseline

34 Oct 08, 2022
Official Implementation of "Tracking Grow-Finish Pigs Across Large Pens Using Multiple Cameras"

Multi Camera Pig Tracking Official Implementation of Tracking Grow-Finish Pigs Across Large Pens Using Multiple Cameras CVPR2021 CV4Animals Workshop P

44 Jan 06, 2023
Improving 3D Object Detection with Channel-wise Transformer

"Improving 3D Object Detection with Channel-wise Transformer" Thanks for the OpenPCDet, this implementation of the CT3D is mainly based on the pcdet v

Hualian Sheng 107 Dec 20, 2022
Portfolio Optimization and Quantitative Strategic Asset Allocation in Python

Riskfolio-Lib Quantitative Strategic Asset Allocation, Easy for Everyone. Description Riskfolio-Lib is a library for making quantitative strategic ass

Riskfolio 1.7k Jan 07, 2023
PyTorch implementation of the Pose Residual Network (PRN)

Pose Residual Network This repository contains a PyTorch implementation of the Pose Residual Network (PRN) presented in our ECCV 2018 paper: Muhammed

Salih Karagoz 289 Nov 28, 2022
All course materials for the Zero to Mastery Deep Learning with TensorFlow course.

All course materials for the Zero to Mastery Deep Learning with TensorFlow course.

Daniel Bourke 3.4k Jan 07, 2023
Preprocessed Datasets for our Multimodal NER paper

Unified Multimodal Transformer (UMT) for Multimodal Named Entity Recognition (MNER) Two MNER Datasets and Codes for our ACL'2020 paper: Improving Mult

76 Dec 21, 2022
Implementation of our recent paper, WOOD: Wasserstein-based Out-of-Distribution Detection.

WOOD Implementation of our recent paper, WOOD: Wasserstein-based Out-of-Distribution Detection. Abstract The training and test data for deep-neural-ne

8 Dec 24, 2022
A Python module for the generation and training of an entry-level feedforward neural network.

ff-neural-network A Python module for the generation and training of an entry-level feedforward neural network. This repository serves as a repurposin

Riadh 2 Jan 31, 2022
Deep Sea Treasure Environment for Multi-Objective Optimization Research

DeepSeaTreasure Environment Installation In order to get started with this environment, you can install it using the following command: python3 -m pip

imec IDLab 6 Nov 14, 2022
PyTorch - Python + Nim

Master Release Pytorch - Py + Nim A Nim frontend for pytorch, aiming to be mostly auto-generated and internally using ATen. Because Nim compiles to C+

Giovanni Petrantoni 425 Dec 22, 2022
Neural Scene Graphs for Dynamic Scene (CVPR 2021)

Implementation of Neural Scene Graphs, that optimizes multiple radiance fields to represent different objects and a static scene background. Learned representations can be rendered with novel object

151 Dec 26, 2022
Dynamica causal Bayesian optimisation

Dynamic Causal Bayesian Optimization This is a Python implementation of Dynamic Causal Bayesian Optimization as presented at NeurIPS 2021. Abstract Th

nd308 18 Nov 22, 2022
Crosslingual Segmental Language Model

Crosslingual Segmental Language Model This repository contains the code from Multilingual unsupervised sequence segmentation transfers to extremely lo

C.M. Downey 1 Jun 13, 2022
A Neural Net Training Interface on TensorFlow, with focus on speed + flexibility

Tensorpack is a neural network training interface based on TensorFlow. Features: It's Yet Another TF high-level API, with speed, and flexibility built

Tensorpack 6.2k Jan 01, 2023
DeepMetaHandles: Learning Deformation Meta-Handles of 3D Meshes with Biharmonic Coordinates

DeepMetaHandles (CVPR2021 Oral) [paper] [animations] DeepMetaHandles is a shape deformation technique. It learns a set of meta-handles for each given

Liu Minghua 73 Dec 15, 2022
Implementation of QuickDraw - an online game developed by Google, combined with AirGesture - a simple gesture recognition application

QuickDraw - AirGesture Introduction Here is my python source code for QuickDraw - an online game developed by google, combined with AirGesture - a sim

Viet Nguyen 89 Dec 18, 2022
A high performance implementation of HDBSCAN clustering.

HDBSCAN HDBSCAN - Hierarchical Density-Based Spatial Clustering of Applications with Noise. Performs DBSCAN over varying epsilon values and integrates

2.3k Jan 02, 2023
R-Drop: Regularized Dropout for Neural Networks

R-Drop: Regularized Dropout for Neural Networks R-drop is a simple yet very effective regularization method built upon dropout, by minimizing the bidi

756 Dec 27, 2022