๐Ÿ˜ฎThe official implementation of "CoNeRF: Controllable Neural Radiance Fields" ๐Ÿ˜ฎ

Overview

CoNeRF: Controllable Neural Radiance Fields

arXiv MIT license Website Datasets

This is the official implementation for "CoNeRF: Controllable Neural Radiance Fields"

The codebase is based on HyperNeRF implemente in JAX, building on JaxNeRF.

Setup

The code can be run under any environment with Python 3.8 and above. (It may run with lower versions, but we have not tested it).

We recommend using Miniconda and setting up an environment:

conda create --name conerf python=3.8

Next, install the required packages:

pip install -r requirements.txt

Install the appropriate JAX distribution for your environment by following the instructions here. For example:

# For CUDA version 11.1
pip install --upgrade "jax[cuda111]" -f https://storage.googleapis.com/jax-releases/jax_releases.html

Dataset

Basic structure

The dataset uses the same format as Nerfies for the image extraction and camera estimation.

For annotations, we create an additional file annotations.yml consisting of attribute values and their corresponding frames, and a folder with [frame_id].json files (only annotated frames are required to have a corresponding .json file) where each *.json file is a segmentation mask created with LabelMe. In summary, each dataset has to have the following structure:

<dataset>
    โ”œโ”€โ”€ annotations
    โ”‚   โ””โ”€โ”€ ${item_id}.json
    โ”œโ”€โ”€ annotations.yml
    โ”œโ”€โ”€ camera
    โ”‚   โ””โ”€โ”€ ${item_id}.json
    โ”œโ”€โ”€ camera-paths
    โ”œโ”€โ”€ colmap
    โ”œโ”€โ”€ rgb
    โ”‚   โ”œโ”€โ”€ ${scale}x
    โ”‚   โ””โ”€โ”€ โ””โ”€โ”€ ${item_id}.png
    โ”œโ”€โ”€ metadata.json
    โ”œโ”€โ”€ dataset.json
    โ”œโ”€โ”€ scene.json
    โ””โ”€โ”€ mapping.yml

The mapping.yml file can be created manually and serves to map class indices to class names which were created with LabelMe. It has the following format:

<index-from-0>: <class-name>

for example:

0: left eye
1: right eye

The annotations.yml can be created manually as well (though we encourage using the provided notebook for this task) and has the following format:

- class: <id>
  frame: <number>
  value: <attribute-value> # between -1 and 1

for example:

- class: 0 # corresponding to left eye
  frame: 128
  value: -1
- class: 1 # corresponding to right eye
  frame: 147
  value: 1
- class: 2 # corresponding to mouth
  frame: 147
  value: -1 

Principles of annotating the data

  • Our framework works well with just a bunch of annotations (for extreme points as an example). For our main face visualizations, we used just 2 annotations per attribute.
  • We highly recommend annotating these frames that are extremes of possible controllability, for example, fully eye closed will be -1 value and fully open eye will +1 value. Though it is not necessary to be exact in extremes, the more accurate annotations, the more accurate controllability you can expect
  • Each attribute can be annotated independently, i.e., there is no need to look for frames that have exactly extreme values of all attributes. For example, left eye=-1 and left eye=+1 values can be provided in frames 28 and 47, while right eye=-1 and right eye=+1 can be provided in any other frames.
  • Masks should be quite rough oversized, it is generally better to have bigger than smaller annotations.
  • The general annotation pipeline looks like this:
  1. Find set of frames that consist of extreme attributions (e.g. closed eye, open eye etc.).
  2. Provide necessary values in for attributes to be controlled in annotations.yml.
  3. Set names for these attributes (necessary for the masking part).
  4. Run LabelMe.
  5. Save annotated frames in annotations/.

Now you can run the training! Also, check out our datasets (52GB of data) to avoid any preprocessing steps on your own.

We tried our best to make our CoNeRF codebase to be general for novel view synthesis validation dataset (conerf/datasets/nerfies.py file) but we mainly focused on the interpolation task. If you have an access to the novel view synthesis rig as used in NeRFies or HyperNeRF, and you find out that something doesn't work, please leave an issue.

Providing value annotations

We extended the basic notebook used in NeRFies and HyperNeRF for processing the data so that you can annotate necessary images with attributes. Please check out notebooks/Capture_Processing.ipynb for more details. The notebook (despite all the files from NeRFies) will also generate <dataset>/annotations.yml and <dataset>/mapping.yml files.

Providing masking annotations

We adapted data loading class to handle annotations from LabelMe (we used its docker version). Example annotation for one of our datasets looks like this:

example-annotation

The program generates *.json files in File->Output Dir which should be located in <dataset>/annotations/ folder.

Training

After preparing a dataset, you can train a Nerfie by running:

export DATASET_PATH=/path/to/dataset
export EXPERIMENT_PATH=/path/to/save/experiment/to
python train.py \
    --base_folder $EXPERIMENT_PATH \
    --gin_bindings="data_dir='$DATASET_PATH'" \
    --gin_configs configs/test_local_attributes.gin

To plot telemetry to Tensorboard and render checkpoints on the fly, also launch an evaluation job by running:

python eval.py \
    --base_folder $EXPERIMENT_PATH \
    --gin_bindings="data_dir='$DATASET_PATH'" \
    --gin_configs configs/test_local_attributes.gin

The two jobs should use a mutually exclusive set of GPUs. This division allows the training job to run without having to stop for evaluation.

Configuration

  • We use Gin for configuration.
  • We provide a couple preset configurations.
  • Please refer to config.py for documentation on what each configuration does.
  • Preset configs:
    • baselines/: All configs that were used to perform quantitative evaluation in the experiments, including baseline methods. The _proj suffix denotes a method that uses a learnable projection.
      • ours.gin: The full CoNeRF architecture with masking.
      • hypernerf_ap[_proj].gin: The axis-aligned plane configuration for HyperNeRF.
      • hypernerf_ds[_proj].gin: The deformable surface configuration for HyperNeRF.
      • nerf_latent[_proj].gin: The configuration for a simple baselines where we concatenate a learnable latent with each coordinate (resembles HyperNeRF AP without the warping field).
      • nerfies[_proj].gin: The configuration for the NeRFies model.
      • nerf.gin: The configuration for the simplest NeRF architecture.
    • full-hd/, hd/ and post/: We repurposed our baselines/ours.gin configuration for training for different resolutions and different sampling parameters that increase the quality of the generated images. Using post/ours.gin required us to use 4x A100 GPU for 2 weeks to make the training converge.

Synthetic dataset

We generated the synthetic dataset using Kubric. You can find the generation script here. After generating the dataset, you can run prepare_kubric_dataset.py to canonicalize its format to the same one that works with CoNeRF. The dataset is already attached in the provided zip file.

Additional scripts

All scripts below are used as the ones for training, they need $EXPERIMENT_PATH and $DATASET_PATH to be specified. They save the results into $EXPERIMENT_PATH.

  • render_changing_attributes.py: Renders each of changing attributes under a fixed camera.
  • render_video.py: Renders changing view under a fixed set of attributes.
  • render_all.py: Renders dynamically changing attributes and the camera parameters.
  • train_lr.py: Estimates parameters of the linear regression. The estimated model maps highly dimensional embedding into controllable attributes.

Additional notes

  • We have used notebooks/Results.ipynb to generate tables/visualizations for the article. While it may not particularily useful for you case, we have left it so you can copy or reuse some of its snippets. It's especially useful because it shows how to extract data from tensorboards.
  • We removed some of notebooks that were available in the HyperNeRF's codebase (ex. for training) but were no longer applicable to CoNeRF. We highly recommend using available scripts. If you have ever managed to adapt HyperNeRF's notebooks, please leave a pull request.

Citing

If you find our work useful, please consider citing:

@inproceedings{kania2022conerf,
  title     = {{CoNeRF: Controllable Neural Radiance Fields}},
  author    = {Kania, Kacper and Yi, Kwang Moo and Kowalski, Marek and Trzci{\'n}ski, Tomasz and Tagliasacchi, Andrea},
  booktitle   = {Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition},
  year      = {2022}
}
Owner
Kacper Kania
PhDing in Neural Human Rendering ... ๐Ÿ‘€
Kacper Kania
A Next Generation ConvNet by FaceBookResearch Implementation in PyTorch(Original) and TensorFlow.

ConvNeXt A Next Generation ConvNet by FaceBookResearch Implementation in PyTorch(Original) and TensorFlow. A FacebookResearch Implementation on A Conv

Raghvender 2 Feb 14, 2022
Controlling the MicriSpotAI robot from scratch

Project-MicroSpot-AI Controlling the MicriSpotAI robot from scratch Colaborators Alexander Dennis Components from MicroSpot The MicriSpotAI has the fo

Dennis Nรบรฑez-Fernรกndez 5 Oct 20, 2022
Semi-Supervised Semantic Segmentation with Pixel-Level Contrastive Learning from a Class-wise Memory Bank

This repository provides the official code for replicating experiments from the paper: Semi-Supervised Semantic Segmentation with Pixel-Level Contrast

Iรฑigo Alonso Ruiz 58 Dec 15, 2022
Extending JAX with custom C++ and CUDA code

Extending JAX with custom C++ and CUDA code This repository is meant as a tutorial demonstrating the infrastructure required to provide custom ops in

Dan Foreman-Mackey 237 Dec 23, 2022
source code the paper Fast and Robust Iterative Closet Point.

Fast-Robust-ICP This repository includes the source code the paper Fast and Robust Iterative Closet Point. Authors: Juyong Zhang, Yuxin Yao, Bailin De

yaoyuxin 320 Dec 28, 2022
Implementation of Basic Machine Learning Algorithms on small datasets using Scikit Learn.

Basic Machine Learning Algorithms All the basic Machine Learning Algorithms are implemented in Python using libraries Acknowledgements Machine Learnin

Piyal Banik 47 Oct 16, 2022
Official code for the ICCV 2021 paper "DECA: Deep viewpoint-Equivariant human pose estimation using Capsule Autoencoders"

DECA Official code for the ICCV 2021 paper "DECA: Deep viewpoint-Equivariant human pose estimation using Capsule Autoencoders". All the code is writte

23 Dec 01, 2022
Implementation of ConvMixer for "Patches Are All You Need? ๐Ÿคท"

Patches Are All You Need? ๐Ÿคท This repository contains an implementation of ConvMixer for the ICLR 2022 submission "Patches Are All You Need?" by Asher

CMU Locus Lab 934 Jan 08, 2023
TensorFlow2 Classification Model Zoo playing with TensorFlow2 on the CIFAR-10 dataset.

Training CIFAR-10 with TensorFlow2(TF2) TensorFlow2 Classification Model Zoo. I'm playing with TensorFlow2 on the CIFAR-10 dataset. Architectures LeNe

Chia-Hung Yuan 16 Sep 27, 2022
This code is 3d-CNN model that can predict environmental value

Predict-environmental-value-3dCNN This code is 3d-CNN model that can predict environmental value. Firstly, I built a model that can create a lot of bu

1 Jan 06, 2022
Minecraft agent to farm resources using reinforcement learning

BarnyardBot CS 175 group project using Malmo download BarnyardBot.py into the python examples directory and run 'python BarnyardBot.py' in the console

0 Jul 26, 2022
Meta Language-Specific Layers in Multilingual Language Models

Meta Language-Specific Layers in Multilingual Language Models This repo contains the source codes for our paper On Negative Interference in Multilingu

Zirui Wang 20 Feb 13, 2022
(ICCV'21) Official PyTorch implementation of Relational Embedding for Few-Shot Classification

Relational Embedding for Few-Shot Classification (ICCV 2021) Dahyun Kang, Heeseung Kwon, Juhong Min, Minsu Cho [paper], [project hompage] We propose t

Dahyun Kang 82 Dec 24, 2022
Tensorflow implementation of Fully Convolutional Networks for Semantic Segmentation

FCN.tensorflow Tensorflow implementation of Fully Convolutional Networks for Semantic Segmentation (FCNs). The implementation is largely based on the

Sarath Shekkizhar 1.3k Dec 25, 2022
StyleGAN-Human: A Data-Centric Odyssey of Human Generation

StyleGAN-Human: A Data-Centric Odyssey of Human Generation Abstract: Unconditional human image generation is an important task in vision and graphics,

stylegan-human 762 Jan 08, 2023
Measuring if attention is explanation with ROAR

NLP ROAR Interpretability Official code for: Evaluating the Faithfulness of Importance Measures in NLP by Recursively Masking Allegedly Important Toke

Andreas Madsen 19 Nov 13, 2022
Updated for TTS(CE) = Also Known as TTN V3. The code requires the first server to be 'ttn' protocol.

Updated Updated for TTS(CE) = Also Known as TTN V3. The code requires the first server to be 'ttn' protocol. Introduction This balenaCloud (previously

Remko 1 Oct 17, 2021
Code repo for EMNLP21 paper "Zero-Shot Information Extraction as a Unified Text-to-Triple Translation"

Zero-Shot Information Extraction as a Unified Text-to-Triple Translation Source code repo for paper Zero-Shot Information Extraction as a Unified Text

cgraywang 88 Dec 31, 2022
EDPN: Enhanced Deep Pyramid Network for Blurry Image Restoration

EDPN: Enhanced Deep Pyramid Network for Blurry Image Restoration Ruikang Xu, Zeyu Xiao, Jie Huang, Yueyi Zhang, Zhiwei Xiong. EDPN: Enhanced Deep Pyra

69 Dec 15, 2022
Mmdet benchmark with python

mmdet_benchmark ๆœฌ้กน็›ฎๆ˜ฏไธบไบ†็ ”็ฉถ mmdet ๆŽจๆ–ญๆ€ง่ƒฝ็“ถ้ขˆ๏ผŒๅนถไธ”ๅฏนๅ…ถ่ฟ›่กŒไผ˜ๅŒ–ใ€‚ ้…็ฝฎไธŽ็Žฏๅขƒ ๆœบๅ™จ้…็ฝฎ CPU๏ผšIntel(R) Core(TM) i9-10900K CPU @ 3.70GHz GPU๏ผšNVIDIA GeForce RTX 3080 10GB ๅ†…ๅญ˜๏ผš64G ็กฌ็›˜๏ผš1T

ๆจๅŸนๆ–‡ (Yang Peiwen) 24 May 21, 2022