TUPÃ was developed to analyze electric field properties in molecular simulations

Related tags

Deep Learningtupa
Overview

Twitter Follow

TUPÃ: Electric field analyses for molecular simulations

alt text

What is TUPÃ?

TUPÃ (pronounced as tu-pan) is a python algorithm that employs MDAnalysis engine to calculate electric fields at any point inside the simulation box throughout MD trajectories. TUPÃ also includes a PyMOL plugin to visualize electric field vectors together with molecules.

Required packages:

  • MDAnalysis >= 1.0.0
  • Python >= 3.x
  • Numpy >= 1.2.x

Installation instructions

First, make sure you have all required packages installed. For MDAnalysis installation procedures, click here.

After, just clone this repository into a folder of your choice:

git clone https://github.com/mdpoleto/tupa.git

To use TUPÃ easily, copy the directory pathway to TUPÃ folder and include an alias in your ~/.bashrc:

alias tupa="python /path/to/the/cloned/repository/TUPA.py"

To install the PyMOL plugin, open PyMOL > Plugin Manager and click on "Install New Plugin" tab. Load the TUPÃ plugin and use it via command-line within PyMOL. To usage instructions, read our FAQ.

TUPÃ Usage

TUPÃ calculations are based on parameters that are provided via a configuration file, which can be obtained via the command:

tupa -template config.conf

The configuration file usually contains:

[Environment Selection]
sele_environment      = (string)             [default: None]

[Probe Selection]
mode                = (string)             [default: None]
selatom             = (string)             [default: None]
selbond1            = (string)             [default: None]
selbond2            = (string)             [default: None]
targetcoordinate    = [float,float,float]  [default: None]
remove_self         = (True/False)         [default: False]
remove_cutoff       = (float)              [default: 1 A ]

[Solvent]
include_solvent     = (True/False)         [default: False]
solvent_cutoff      = (float)              [default: 10 A]
solvent_selection   = (string)             [default: None]

[Time]
dt                  = (integer)            [default: 1]

A complete explanation of each option in the configuration file is available via the command:

tupa -h

TUPÃ has 3 calculations MODES:

  • In ATOM mode, the coordinate of one atom will be tracked throughout the trajectory to serve as target point. If more than 1 atom is provided in the selection, the center of geometry (COG) is used as target position. An example is provided HERE.

  • In BOND mode, the midpoint between 2 atoms will be tracked throughout the trajectory to serve as target point. In this mode, the bond axis is used to calculate electric field alignment. By default, the bond axis is define as selbond1 ---> selbond2. An example is provided HERE.

  • In COORDINATE mode, a list of [X,Y,Z] coordinates will serve as target point in all trajectory frames. An example is provided HERE.

IMPORTANT:

  • All selections must be compatible with MDAnalysis syntax.
  • TUPÃ does not handle PBC images yet! Trajectories MUST be re-imaged before running TUPÃ.
  • Solvent molecules in PBC images are selected if within the cutoff. This is achieved by applying the around selection feature in MDAnalysis.
  • TUPÃ does not account for Particle Mesh Ewald (PME) electrostatic contributions! To minimize such effects, center your target as well as possible.
  • If using COORDINATE mode, make sure your trajectory has no translations and rotations. Our code does not account for rotations and translations.

TUPÃ PyMOL Plugin (pyTUPÃ)

To install pyTUPÃ plugin in PyMOL, click on Plugin > Plugin Manager and then "Install New Plugin" tab. Choose the pyTUPÃ.py file and click Install.

Our plugin has 3 functions that can be called via command line within PyMOL:

  • efield_point: create a vector at a given atom or set of coordinates.
efield_point segid LIG and name O1, efield=[-117.9143, 150.3252, 86.5553], scale=0.01, color="red", name="efield_OG"
  • efield_bond: create a vector midway between 2 selected atoms.
efield_point resname LIG and name O1, resname LIG and name C1, efield=[-94.2675, -9.6722, 58.2067], scale=0.01, color="blue", name="efield_OG-C1"
  • draw_bond_axis: create a vector representing the axis between 2 atoms.
draw_bond_axis resname LIG and name O1, resname LIG and name C1, gap=0.5, color="gray60", name="axis_OG-C1"

Citing TUPÃ

If you use TUPÃ in a scientific publication, we would appreciate citations to the following paper:

Marcelo D. Polêto, Justin A. Lemkul. TUPÃ: Electric field analysis for molecular simulations, 2022.

Bibtex entry:

@article{TUPÃ2022,
    author = {Pol\^{e}to, M D and Lemkul, J A},
    title = "{TUPÃ : Electric field analyses for molecular simulations}",
    journal = {},
    year = {},
    month = {},
    issn = {},
    doi = {},
    url = {},
    note = {},
    eprint = {},
}

Why TUPÃ?

In the Brazilian folklore, Tupã is considered a "manifestation of God in the form of thunder". To know more, refer to this.

Contact information

E-mail: [email protected] / [email protected]

You might also like...
Differentiable molecular simulation of proteins with a coarse-grained potential

Differentiable molecular simulation of proteins with a coarse-grained potential This repository contains the learned potential, simulation scripts and

Few-Shot Graph Learning for Molecular Property Prediction

Few-shot Graph Learning for Molecular Property Prediction Introduction This is the source code and dataset for the following paper: Few-shot Graph Lea

SkipGNN: Predicting Molecular Interactions with Skip-Graph Networks (Scientific Reports)
SkipGNN: Predicting Molecular Interactions with Skip-Graph Networks (Scientific Reports)

SkipGNN: Predicting Molecular Interactions with Skip-Graph Networks Molecular interaction networks are powerful resources for the discovery. While dee

MolRep: A Deep Representation Learning Library for Molecular Property Prediction
MolRep: A Deep Representation Learning Library for Molecular Property Prediction

MolRep: A Deep Representation Learning Library for Molecular Property Prediction Summary MolRep is a Python package for fairly measuring algorithmic p

Implementation of Learning Gradient Fields for Molecular Conformation Generation (ICML 2021).
Implementation of Learning Gradient Fields for Molecular Conformation Generation (ICML 2021).

[PDF] | [Slides] The official implementation of Learning Gradient Fields for Molecular Conformation Generation (ICML 2021 Long talk) Installation Inst

Kaggle | 9th place (part of) solution for the Bristol-Myers Squibb – Molecular Translation challenge

Part of the 9th place solution for the Bristol-Myers Squibb – Molecular Translation challenge translating images containing chemical structures into I

source code for https://arxiv.org/abs/2005.11248 "Accelerating Antimicrobial Discovery with Controllable Deep Generative Models and Molecular Dynamics"

Accelerating Antimicrobial Discovery with Controllable Deep Generative Models and Molecular Dynamics This work will be published in Nature Biomedical

Fast and scalable uncertainty quantification for neural molecular property prediction, accelerated optimization, and guided virtual screening.
Fast and scalable uncertainty quantification for neural molecular property prediction, accelerated optimization, and guided virtual screening.

Evidential Deep Learning for Guided Molecular Property Prediction and Discovery Ava Soleimany*, Alexander Amini*, Samuel Goldman*, Daniela Rus, Sangee

Code for the paper
Code for the paper "JANUS: Parallel Tempered Genetic Algorithm Guided by Deep Neural Networks for Inverse Molecular Design"

JANUS: Parallel Tempered Genetic Algorithm Guided by Deep Neural Networks for Inverse Molecular Design This repository contains code for the paper: JA

Comments
  • 1.4.0 branch

    1.4.0 branch

    TUPÃ update (Aug 03 2022):

    • Empty environment selection now issues an error.
      
    • Empty probe selection now issues an error.
      
    • Improved Help/Usage 
      
    • Configuration file examples are based on common syntax
      
    opened by mdpoleto 0
  • 1.3.0 branch

    1.3.0 branch

    TUPÃ update (Jun 21 2022):

    • -dumptime now accepts multiple entries
    • Add average and standard deviation values at the end of ElecField_proj_onto_bond.dat and ElecField_alignment.dat
    • Add Angle column in ElecField_alignment.dat with the average angle between Efield(t) and bond axis.
    • Fix documentation issues/typos.
    opened by mdpoleto 0
Releases(v1.4.0)
  • v1.4.0(Aug 3, 2022)

    TUPÃ update (Aug 03 2022):

    • Empty environment selection now issues an error.
      
    • Empty probe selection now issues an error.
      
    • Improved Help/Usage 
      
    • Configuration file examples are based on common syntax
      
    Source code(tar.gz)
    Source code(zip)
  • v1.3.0(Jun 22, 2022)

    TUPÃ update (Jun 21 2022):

    • -dumptime now accepts multiple entries
    • Add average and standard deviation values at the end of ElecField_proj_onto_bond.dat and ElecField_alignment.dat
    • Add Angle column in ElecField_alignment.dat with the average angle between Efield(t) and bond axis.
    • Fix documentation issues/typos.
    Source code(tar.gz)
    Source code(zip)
  • v1.2.0(Apr 18, 2022)

    TUPÃ update (Apr 18 2022):

    • Make -dump now writes the entire system instead of just the environment selection.
    • Add field average and standard deviation values at the end of ElecField.dat
    • Fix documentation issues/typos.
    • Update paper metadata
    Source code(tar.gz)
    Source code(zip)
  • v1.1.0(Mar 23, 2022)

    TUPÃ update (Mar 22 2022):

    • Inclusion of LIST mode: TUPÃ reads a file containing XYZ coordinates that will be used as the probe position. Useful for binding sites or other pockets.
    • Fix documentation issues/typos.

    pyTUPÃ update (Mar 22 2022):

    • Support for a 3D representation of electric field standard deviation as a truncated cone that involves the electric field arrow.
    Source code(tar.gz)
    Source code(zip)
  • v1.0.0(Feb 9, 2022)

    TUPÃ first release (Feb 13 2022):

    • Calculation modes available: ATOM, BOND, COORDINATE
    • Support for triclinic simulation boxes only.
    • PBC support is limited to triclinic boxes. Future versions are expected to handle PBC corrections.
    • Removal of "self-contributions" are available to the COORDINATE mode only.
    • Users can dump a specific frame as a .pdb file. Futures versions are expected to allow the extraction of the environment set coordinates.
    • Residue contributions are calculated.

    pyTUPÃ first release (Feb 13 2022):

    • Support for draw_bond, efield_bond and efield_point.
    • EField vectors can be scaled up/down
    Source code(tar.gz)
    Source code(zip)
Owner
Marcelo D. Polêto
Marcelo D. Polêto
LSTM and QRNN Language Model Toolkit for PyTorch

LSTM and QRNN Language Model Toolkit This repository contains the code used for two Salesforce Research papers: Regularizing and Optimizing LSTM Langu

Salesforce 1.9k Jan 08, 2023
A large dataset of 100k Google Satellite and matching Map images, resembling pix2pix's Google Maps dataset.

Larger Google Sat2Map dataset This dataset extends the aerial ⟷ Maps dataset used in pix2pix (Isola et al., CVPR17). The provide script download_sat2m

34 Dec 28, 2022
Comp445 project - Data Communications & Computer Networks

COMP-445 Data Communications & Computer Networks Change Python version in Conda

Peng Zhao 2 Oct 03, 2022
Minimal diffusion models - Minimal code and simple experiments to play with Denoising Diffusion Probabilistic Models (DDPMs)

Minimal code and simple experiments to play with Denoising Diffusion Probabilist

Rithesh Kumar 16 Oct 06, 2022
A PyTorch Implementation of Gated Graph Sequence Neural Networks (GGNN)

A PyTorch Implementation of GGNN This is a PyTorch implementation of the Gated Graph Sequence Neural Networks (GGNN) as described in the paper Gated G

Ching-Yao Chuang 427 Dec 13, 2022
Deep Multimodal Neural Architecture Search

MMNas: Deep Multimodal Neural Architecture Search This repository corresponds to the PyTorch implementation of the MMnas for visual question answering

Vision and Language Group@ MIL 23 Dec 21, 2022
Pythonic particle-based (super-droplet) warm-rain/aqueous-chemistry cloud microphysics package with box, parcel & 1D/2D prescribed-flow examples in Python, Julia and Matlab

PySDM PySDM is a package for simulating the dynamics of population of particles. It is intended to serve as a building block for simulation systems mo

Atmospheric Cloud Simulation Group @ Jagiellonian University 32 Oct 18, 2022
Lighthouse: Predicting Lighting Volumes for Spatially-Coherent Illumination

Lighthouse: Predicting Lighting Volumes for Spatially-Coherent Illumination Pratul P. Srinivasan, Ben Mildenhall, Matthew Tancik, Jonathan T. Barron,

Pratul Srinivasan 65 Dec 14, 2022
ReConsider is a re-ranking model that re-ranks the top-K (passage, answer-span) predictions of an Open-Domain QA Model like DPR (Karpukhin et al., 2020).

ReConsider ReConsider is a re-ranking model that re-ranks the top-K (passage, answer-span) predictions of an Open-Domain QA Model like DPR (Karpukhin

Facebook Research 47 Jul 26, 2022
Official Pytorch Implementation of: "Semantic Diversity Learning for Zero-Shot Multi-label Classification"(2021) paper

Semantic Diversity Learning for Zero-Shot Multi-label Classification Paper Official PyTorch Implementation Avi Ben-Cohen, Nadav Zamir, Emanuel Ben Bar

28 Aug 29, 2022
Deep Q-network learning to play flappybird.

AI Plays Flappy Bird I've trained a DQN that learns to play flappy bird on it's own. Try the pre-trained model First install the pip requirements and

Anish Shrestha 3 Mar 01, 2022
Practical Blind Denoising via Swin-Conv-UNet and Data Synthesis

Practical Blind Denoising via Swin-Conv-UNet and Data Synthesis [Paper] [Online Demo] The following results are obtained by our SCUNet with purely syn

Kai Zhang 312 Jan 07, 2023
Python package to generate image embeddings with CLIP without PyTorch/TensorFlow

imgbeddings A Python package to generate embedding vectors from images, using OpenAI's robust CLIP model via Hugging Face transformers. These image em

Max Woolf 81 Jan 04, 2023
CondLaneNet: a Top-to-down Lane Detection Framework Based on Conditional Convolution

CondLaneNet: a Top-to-down Lane Detection Framework Based on Conditional Convolution This is the official implementation code of the paper "CondLaneNe

Alibaba Cloud 311 Dec 30, 2022
Super-BPD: Super Boundary-to-Pixel Direction for Fast Image Segmentation (CVPR 2020)

Super-BPD for Fast Image Segmentation (CVPR 2020) Introduction We propose direction-based super-BPD, an alternative to superpixel, for fast generic im

189 Dec 07, 2022
Joint parameterization and fitting of stroke clusters

StrokeStrip: Joint Parameterization and Fitting of Stroke Clusters Dave Pagurek van Mossel1, Chenxi Liu1, Nicholas Vining1,2, Mikhail Bessmeltsev3, Al

Dave Pagurek 44 Dec 01, 2022
This repository contains pre-trained models and some evaluation code for our paper Towards Unsupervised Dense Information Retrieval with Contrastive Learning

Contriever: Towards Unsupervised Dense Information Retrieval with Contrastive Learning This repository contains pre-trained models and some evaluation

Meta Research 207 Jan 08, 2023
GemNet model in PyTorch, as proposed in "GemNet: Universal Directional Graph Neural Networks for Molecules" (NeurIPS 2021)

GemNet: Universal Directional Graph Neural Networks for Molecules Reference implementation in PyTorch of the geometric message passing neural network

Data Analytics and Machine Learning Group 124 Dec 30, 2022
Implementing Vision Transformer (ViT) in PyTorch

Lightning-Hydra-Template A clean and scalable template to kickstart your deep learning project 🚀 ⚡ 🔥 Click on Use this template to initialize new re

2 Dec 24, 2021
This is the official Pytorch implementation of the paper "Diverse Motion Stylization for Multiple Style Domains via Spatial-Temporal Graph-Based Generative Model"

Diverse Motion Stylization (Official) This is the official Pytorch implementation of this paper. Diverse Motion Stylization for Multiple Style Domains

Soomin Park 28 Dec 16, 2022