Open-Domain Question-Answering for COVID-19 and Other Emergent Domains

Overview

Open-Domain Question-Answering for COVID-19 and Other Emergent Domains

This repository contains the source code for an end-to-end open-domain question answering system. The system is made up of two components: a retriever model and a reading comprehension (question answering) model. We provide the code for these two models in addition to demo code based on Streamlit. A video of the demo can be viewed here.

Installation

Our system uses PubMedBERT, a neural language model that is pretrained on PubMed abstracts for the retriever. Download the PyTorch version of PubMedBert here. For reading comprehension, we utilize BioBERT fine-tuned on SQuAD V2 . The model can be found here.

Datasets

We provide the COVID-QA dataset under the data directory. This is used for both the retriever and reading models. The train/dev/test files for the retriever are named dense_*.txt and those for reading comprehension are named qa_*.json.

The CORD-19 dataset is available for download here. Our system requires download of both the document_parses and metadata files for complete article information. For our system we use the 2021-02-15 download but any other download can also work. This must be combined into a jsonl file where each line contains a json object with:

  • id: article PMC id
  • title: article title
  • text: article text
  • index: text's index in the corpus (also the same as line number in the jsonl file)
  • date: article date
  • journal: journal published
  • authors: author list

We split each article into multiple json entries based on paragraph text cutoff in the document_parses file. Paragraphs that are longer than 200 tokens are split futher. This can be done with splitCORD.py where

* metdata-file: the metadata downloaded for CORD
* pmc-path: path to the PMC articles downloaded for CORD
* out-path: output jsonl file

Dense Retrieval Model

Once we have our model (PubMedBERT), we can start training. More specifically during training, we use positive and negative paragraphs, positive being paragraphs that contain the answer to a question, and negative ones not. We train on the COVID-QA dataset (see the Datasets section for more information on COVID-QA). We have a unified encoder for both questions and text paragraphs that learns to encode questions and associated texts into similar vectors. Afterwards, we use the model to encode the CORD-19 corpus.

Training

scripts/train.sh can be used to train our dense retrieval model.

CUDA_VISIBLE_DEVICES=0 python ../train_retrieval.py \
    --do_train \
    --prefix strong_dpr_baseline_b150 \
    --predict_batch_size 2000 \
    --model_name microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext \
    --train_batch_size 75 \
    --learning_rate 2e-5 \
    --fp16 \
    --train_file ../data/dense_train.txt \
    --predict_file ../data/dense_dev.txt \
    --seed 16 \
    --eval_period 300 \
    --max_c_len 300 \
    --max_q_len 30 \
    --warmup_ratio 0.1 \
    --num_train_epochs 20 \
    --dense_only \
    --output_dir /path/to/model/output \

Here are things to keep in mind:

1. The output_dir flag is where the model will be saved.
2. You can define the init_checkpoint flag to continue fine-tuning on another dataset.

The Dense retrieval model is then combined with BM25 for reranking (see paper for details).

Corpus

Next, go to scripts/encode_covid_corpus.sh for the command to encode our corpus.

CUDA_VISIBLE_DEVICES=0 python ../encode_corpus.py \
    --do_predict \
    --predict_batch_size 1000 \
    --model_name microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext \
    --fp16 \
    --predict_file /path/to/corpus \
    --max_c_len 300 \
    --init_checkpoint /path/to/saved/model/checkpoint_best.pt \
    --save_path /path/to/encoded/corpus

We pass the corpus (CORD-19) to our trained encoder in our dense retrieval model. Corpus embeddings are indexed.

Here are things to keep in mind:

1. The predict_file flag should take in your CORD-19 dataset path. It should be a .jsonl file.
2. Look at your output_dir path when you ran train.sh. After training our model, we should now have a checkpoint in that folder. Copy the exact path onto
the init_checkpoint flag here.
3. As previously mentioned, the result of these commands is the corpus (CORD-19) embeddings become indexed. The embeddings are saved in the save_path flag argument. Create that directory path as you wish.

Evaluation

You can run scripts/eval.sh to evaluate the document retrieval model.

CUDA_VISIBLE_DEVICES=0 python ../eval_retrieval.py \
    ../data/dense_test.txt \
    /path/to/encoded/corpus \
    /path/to/saved/model/checkpoint_best.pt \
    --batch-size 1000 --model-name microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext  --topk 100 --dimension 768

We evaluate retrieval on a test set from COVID-QA. We determine the percentage of questions that have retrieved paragraphs with the correct answer across different top-k settings.

We do that in the following 3 ways:

  1. exact answer matches in top-k retrievals
  2. matching articles in top-k retrievals
  3. F1 and Siamese BERT fuzzy matching

Here are things to think about:

1. The first, second, and third arguments are our COVID-QA test set, corpus indexed embeddings, and retrieval model respectively.
2. The other flag that is important is the topk one. This flag determines the quantity of retrieved CORD19 paragraphs.

Reading Comprehension

We utilize the HuggingFace's question answering scripts to train and evaluate our reading comprehension model. This can be done with scripts/qa.sh. The scripts are modified to allow for the extraction of multiple answer spans per document. We use a BioBERT model fine-tuned on SQuAD V2 as our pre-trained model.

CUDA_VISIBLE_DEVICES=0 python ../qa/run_qa.py \
  --model_name_or_path ktrapeznikov/biobert_v1.1_pubmed_squad_v2 \
  --train_file ../data/qa_train.json \
  --validation_file ../data/qa_dev.json \
  --test_file ../data/qa_test.json \
  --do_train \
  --do_eval \
  --do_predict \
  --per_device_train_batch_size 12 \
  --learning_rate 3e-5 \
  --num_train_epochs 5 \
  --max_seq_length 384 \
  --doc_stride 128 \
  --output_dir /path/to/model/output \

Demo

We combine the retrieval model and reading model for an end-to-end open-domain question answering demo with Streamlit. This can be run with scripts/demo.sh.

CUDA_VISIBLE_DEVICES=0 streamlit run ../covid_qa_demo.py -- \
  --retriever-model-name microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext \
  --retriever-model path/to/saved/retriever_model/checkpoint_best.pt \
  --qa-model-name ktrapeznikov/biobert_v1.1_pubmed_squad_v2 \
  --qa-model /path/to/saved/qa_model \
  --index-path /path/to/encoded/corpus

Here are things to keep in mind:

1. retriever-model is the checkpoint file of your trained retriever model.
2. qa-model is the trained reading comprehension model.
3. index-path is the path to the encoded corpus embeddings.

Requirements

See requirements.txt

This is the pytorch implementation for the paper: *Learning Accurate Performance Predictors for Ultrafast Automated Model Compression*, which is in submission to TPAMI

SeerNet This is the pytorch implementation for the paper: Learning Accurate Performance Predictors for Ultrafast Automated Model Compression, which is

3 May 01, 2022
Back to Event Basics: SSL of Image Reconstruction for Event Cameras

Back to Event Basics: SSL of Image Reconstruction for Event Cameras Minimal code for Back to Event Basics: Self-Supervised Learning of Image Reconstru

TU Delft 42 Dec 26, 2022
"MST++: Multi-stage Spectral-wise Transformer for Efficient Spectral Reconstruction" (CVPRW 2022) & (Winner of NTIRE 2022 Challenge on Spectral Reconstruction from RGB)

MST++: Multi-stage Spectral-wise Transformer for Efficient Spectral Reconstruction (CVPRW 2022) Yuanhao Cai, Jing Lin, Zudi Lin, Haoqian Wang, Yulun Z

Yuanhao Cai 274 Jan 05, 2023
Adversarial-autoencoders - Tensorflow implementation of Adversarial Autoencoders

Adversarial Autoencoders (AAE) Tensorflow implementation of Adversarial Autoencoders (ICLR 2016) Similar to variational autoencoder (VAE), AAE imposes

Qian Ge 236 Nov 13, 2022
A tool for making map images from OpenTTD save games

OpenTTD Surveyor A tool for making map images from OpenTTD save games. This is not part of the main OpenTTD codebase, nor is it ever intended to be pa

Aidan Randle-Conde 9 Feb 15, 2022
Convert openmmlab (not only mmdetection) series model to tensorrt

MMDet to TensorRT This project aims to convert the mmdetection model to TensorRT model end2end. Focus on object detection for now. Mask support is exp

JinTian 4 Dec 17, 2021
Codes of the paper Deformable Butterfly: A Highly Structured and Sparse Linear Transform.

Deformable Butterfly: A Highly Structured and Sparse Linear Transform DeBut Advantages DeBut generalizes the square power of two butterfly factor matr

Rui LIN 8 Jun 10, 2022
SwinIR: Image Restoration Using Swin Transformer

SwinIR: Image Restoration Using Swin Transformer This repository is the official PyTorch implementation of SwinIR: Image Restoration Using Shifted Win

Jingyun Liang 2.4k Jan 05, 2023
Drslmarkov - Distributionally Robust Structure Learning for Discrete Pairwise Markov Networks

Distributionally Robust Structure Learning for Discrete Pairwise Markov Networks

1 Nov 24, 2022
A toolset for creating Qualtrics-based IAT experiments

Qualtrics IAT Tool A web app for generating the Implicit Association Test (IAT) running on Qualtrics Online Web App The app is hosted by Streamlit, a

0 Feb 12, 2022
Classify bird species based on their songs using SIamese Networks and 1D dilated convolutions.

The goal is to classify different birds species based on their songs/calls. Spectrograms have been extracted from the audio samples and used as features for classification.

Aditya Dutt 9 Dec 27, 2022
BBScan py3 - BBScan py3 With Python

BBScan_py3 This repository is forked from lijiejie/BBScan 1.5. I migrated the fo

baiyunfei 12 Dec 30, 2022
Weakly-supervised object detection.

Wetectron Wetectron is a software system that implements state-of-the-art weakly-supervised object detection algorithms. Project CVPR'20, ECCV'20 | Pa

NVIDIA Research Projects 342 Jan 05, 2023
Simple Pose: Rethinking and Improving a Bottom-up Approach for Multi-Person Pose Estimation

SimplePose Code and pre-trained models for our paper, “Simple Pose: Rethinking and Improving a Bottom-up Approach for Multi-Person Pose Estimation”, a

Jia Li 256 Dec 24, 2022
A python comtrade load library accelerated by go

Comtrade-GRPC Code for python used is mainly from dparrini/python-comtrade. Just patch the code in BinaryDatReader.parse for parsing a little more eff

Bo 1 Dec 27, 2021
Code for Environment Dynamics Decomposition (ED2).

ED2 Code for Environment Dynamics Decomposition (ED2). Installation Follow the installation in MBPO and Dreamer. Usage First follow the SD2 method for

0 Aug 10, 2021
ManipNet: Neural Manipulation Synthesis with a Hand-Object Spatial Representation - SIGGRAPH 2021

ManipNet: Neural Manipulation Synthesis with a Hand-Object Spatial Representation - SIGGRAPH 2021 Dataset Code Demos Authors: He Zhang, Yuting Ye, Tak

HE ZHANG 194 Dec 06, 2022
SnapMix: Semantically Proportional Mixing for Augmenting Fine-grained Data (AAAI 2021)

SnapMix: Semantically Proportional Mixing for Augmenting Fine-grained Data (AAAI 2021) PyTorch implementation of SnapMix | paper Method Overview Cite

DavidHuang 126 Dec 30, 2022
Implementation of H-UCRL Algorithm

Implementation of H-UCRL Algorithm This repository is an implementation of the H-UCRL algorithm introduced in Curi, S., Berkenkamp, F., & Krause, A. (

Sebastian Curi 25 May 20, 2022
CUP-DNN is a deep neural network model used to predict tissues of origin for cancers of unknown of primary.

CUP-DNN CUP-DNN is a deep neural network model used to predict tissues of origin for cancers of unknown of primary. The model was trained on the expre

1 Oct 27, 2021