Official source code of Fast Point Transformer, CVPR 2022

Overview

Fast Point Transformer

Project Page | Paper

This repository contains the official source code and data for our paper:

Fast Point Transformer
Chunghyun Park, Yoonwoo Jeong, Minsu Cho, and Jaesik Park
POSTECH GSAI & CSE
CVPR, 2022, New Orleans.

An Overview of the proposed pipeline

Overview

This work introduces Fast Point Transformer that consists of a new lightweight self-attention layer. Our approach encodes continuous 3D coordinates, and the voxel hashing-based architecture boosts computational efficiency. The proposed method is demonstrated with 3D semantic segmentation and 3D detection. The accuracy of our approach is competitive to the best voxel based method, and our network achieves 129 times faster inference time than the state-of-the-art, Point Transformer, with a reasonable accuracy trade-off in 3D semantic segmentation on S3DIS dataset.

Citation

If you find our code or paper useful, please consider citing our paper:

@inproceedings{park2022fast,
 title={{Fast Point Transformer}},
 author={Chunghyun Park and Yoonwoo Jeong and Minsu Cho and Jaesik Park},
 booktitle={Proceedings of the {IEEE/CVF} Conference on Computer Vision and Pattern Recognition (CVPR)},
 year={2022}
}

Experiments

1. S3DIS Area 5 test

We denote MinkowskiNet42 trained with this repository as MinkowskiNet42. We use voxel size 4cm for both MinkowskiNet42 and our Fast Point Transformer.

Model Latency (sec) mAcc (%) mIoU (%) Reference
PointTransformer 18.07 76.5 70.4 Codes from the authors
MinkowskiNet42 0.08 74.1 67.2 Checkpoint
  + rotation average 0.66 75.1 69.0 -
FastPointTransformer 0.14 76.6 69.2 Checkpoint
  + rotation average 1.13 77.6 71.0 -

2. ScanNetV2 validation

Model Voxel Size mAcc (%) mIoU (%) Reference
MinkowskiNet42 2cm - 72.2 Official GitHub
MinkowskiNet42 2cm 81.4 72.1 Checkpoint
FastPointTransformer 2cm 81.2 72.5 Checkpoint
MinkowskiNet42 5cm 76.3 67.0 Checkpoint
FastPointTransformer 5cm 78.9 70.0 Checkpoint
MinkowskiNet42 10cm 70.8 60.7 Checkpoint
FastPointTransformer 10cm 76.1 66.5 Checkpoint

Installation

This repository is developed and tested on

  • Ubuntu 18.04 and 20.04
  • Conda 4.11.0
  • CUDA 11.1
  • Python 3.8.13
  • PyTorch 1.7.1 and 1.10.0
  • MinkowskiEngine 0.5.4

Environment Setup

You can install the environment by using the provided shell script:

~$ git clone --recursive [email protected]:POSTECH-CVLab/FastPointTransformer.git
~$ cd FastPointTransformer
~/FastPointTransformer$ bash setup.sh fpt
~/FastPointTransformer$ conda activate fpt

Training & Evaluation

First of all, you need to download the datasets (ScanNetV2 and S3DIS), and preprocess them as:

(fpt) ~/FastPointTransformer$ python src/data/preprocess_scannet.py # you need to modify the data path
(fpt) ~/FastPointTransformer$ python src/data/preprocess_s3dis.py # you need to modify the data path

And then, locate the provided meta data of each dataset (src/data/meta_data) with the preprocessed dataset following the structure below:

${data_dir}
├── scannetv2
│   ├── meta_data
│   │   ├── scannetv2_train.txt
│   │   ├── scannetv2_val.txt
│   │   └── ...
│   └── scannet_processed
│       ├── train
│       │   ├── scene0000_00.ply
│       │   ├── scene0000_01.ply
│       │   └── ...
│       └── test
└── s3dis
    ├── meta_data
    │   ├── area1.txt
    │   ├── area2.txt
    │   └── ...
    └── s3dis_processed
        ├── Area_1
        │   ├── conferenceRoom_1.ply
        │   ├── conferenceRoom_2.ply
        │   └── ...
        ├── Area_2
        └── ...

After then, you can train and evalaute a model by using the provided python scripts (train.py and eval.py) with configuration files in the config directory. For example, you can train and evaluate Fast Point Transformer with voxel size 4cm on S3DIS dataset via the following commands:

(fpt) ~/FastPointTransformer$ python train.py config/s3dis/train_fpt.gin
(fpt) ~/FastPointTransformer$ python eval.py config/s3dis/eval_fpt.gin {checkpoint_file} # use -r option for rotation averaging.

Consistency Score

You need to generate predictions via the following command:

(fpt) ~/FastPointTransformer$ python -m src.cscore.prepare {checkpoint_file} -m {model_name} -v {voxel_size} # This takes hours.

Then, you can calculate the consistency score (CScore) with:

(fpt) ~/FastPointTransformer$ python -m src.cscore.calculate {prediction_dir} # This takes seconds.

3D Object Detection using VoteNet

Please refer this repository.

Acknowledgement

Our code is based on the MinkowskiEngine. We also thank Hengshuang Zhao for providing the code of Point Transformer. If you use our model, please consider citing them as well.

Object-Centric Learning with Slot Attention

Slot Attention This is a re-implementation of "Object-Centric Learning with Slot Attention" in PyTorch (https://arxiv.org/abs/2006.15055). Requirement

Untitled AI 72 Jan 02, 2023
Official PyTorch code for Hierarchical Conditional Flow: A Unified Framework for Image Super-Resolution and Image Rescaling (HCFlow, ICCV2021)

Hierarchical Conditional Flow: A Unified Framework for Image Super-Resolution and Image Rescaling (HCFlow, ICCV2021) This repository is the official P

Jingyun Liang 159 Dec 30, 2022
Code for the CIKM 2019 paper "DSANet: Dual Self-Attention Network for Multivariate Time Series Forecasting".

Dual Self-Attention Network for Multivariate Time Series Forecasting 20.10.26 Update: Due to the difficulty of installation and code maintenance cause

Kyon Huang 223 Dec 16, 2022
A platform for intelligent agent learning based on a 3D open-world FPS game developed by Inspir.AI.

Wilderness Scavenger: 3D Open-World FPS Game AI Challenge This is a platform for intelligent agent learning based on a 3D open-world FPS game develope

46 Nov 24, 2022
3D detection and tracking viewer (visualization) for kitti & waymo dataset

3D detection and tracking viewer (visualization) for kitti & waymo dataset

222 Jan 08, 2023
A Temporal Extension Library for PyTorch Geometric

Documentation | External Resources | Datasets PyTorch Geometric Temporal is a temporal (dynamic) extension library for PyTorch Geometric. The library

Benedek Rozemberczki 1.9k Jan 07, 2023
Create time-series datacubes for supervised machine learning with ICEYE SAR images.

ICEcube is a Python library intended to help organize SAR images and annotations for supervised machine learning applications. The library generates m

ICEYE Ltd 65 Jan 03, 2023
Real-Time High-Resolution Background Matting

Real-Time High-Resolution Background Matting Official repository for the paper Real-Time High-Resolution Background Matting. Our model requires captur

Peter Lin 6.1k Jan 03, 2023
sssegmentation is a general framework for our research on strongly supervised semantic segmentation.

sssegmentation is a general framework for our research on strongly supervised semantic segmentation.

445 Jan 02, 2023
A powerful framework for decentralized federated learning with user-defined communication topology

Scatterbrained Decentralized Federated Learning Scatterbrained makes it easy to build federated learning systems. In addition to traditional federated

Johns Hopkins Applied Physics Laboratory 7 Sep 26, 2022
[CVPR'2020] DeepDeform: Learning Non-rigid RGB-D Reconstruction with Semi-supervised Data

DeepDeform (CVPR'2020) DeepDeform is an RGB-D video dataset containing over 390,000 RGB-D frames in 400 videos, with 5,533 optical and scene flow imag

Aljaz Bozic 165 Jan 09, 2023
[CVPR 2021] Counterfactual VQA: A Cause-Effect Look at Language Bias

Counterfactual VQA (CF-VQA) This repository is the Pytorch implementation of our paper "Counterfactual VQA: A Cause-Effect Look at Language Bias" in C

Yulei Niu 94 Dec 03, 2022
Enabling Lightweight Fine-tuning for Pre-trained Language Model Compression based on Matrix Product Operators

Enabling Lightweight Fine-tuning for Pre-trained Language Model Compression based on Matrix Product Operators This is our Pytorch implementation for t

RUCAIBox 12 Jul 22, 2022
Learning Pixel-level Semantic Affinity with Image-level Supervision for Weakly Supervised Semantic Segmentation, CVPR 2018

Learning Pixel-level Semantic Affinity with Image-level Supervision This code is deprecated. Please see https://github.com/jiwoon-ahn/irn instead. Int

Jiwoon Ahn 337 Dec 15, 2022
PyTorch implementation of the paper Dynamic Data Augmentation with Gating Networks

Dynamic Data Augmentation with Gating Networks This is an official PyTorch implementation of the paper Dynamic Data Augmentation with Gating Networks

九州大学 ヒューマンインタフェース研究室 3 Oct 26, 2022
JUSTICE: A Benchmark Dataset for Supreme Court’s Judgment Prediction

JUSTICE: A Benchmark Dataset for Supreme Court’s Judgment Prediction CSCI 544 Final Project done by: Mohammed Alsayed, Shaayan Syed, Mohammad Alali, S

Smit Patel 3 Dec 28, 2022
Pytorch implementation of Learning with Opponent-Learning Awareness

Pytorch implementation of Learning with Opponent-Learning Awareness using DiCE

Alexis David Jacq 82 Sep 15, 2022
Calibrate your listeners! Robust communication-based training for pragmatic speakers. Findings of EMNLP 2021.

Calibrate your listeners! Robust communication-based training for pragmatic speakers Rose E. Wang, Julia White, Jesse Mu, Noah D. Goodman Findings of

Rose E. Wang 3 Apr 02, 2022
FcaNet: Frequency Channel Attention Networks

FcaNet: Frequency Channel Attention Networks PyTorch implementation of the paper "FcaNet: Frequency Channel Attention Networks". Simplest usage Models

327 Dec 27, 2022
Evaluation toolkit of the informative tracking benchmark comprising 9 scenarios, 180 diverse videos, and new challenges.

Informative-tracking-benchmark Informative tracking benchmark (ITB) higher diversity. It contains 9 representative scenarios and 180 diverse videos. m

Xin Li 15 Nov 26, 2022