S2-BNN: Bridging the Gap Between Self-Supervised Real and 1-bit Neural Networks via Guided Distribution Calibration (CVPR 2021)

Overview

S2-BNN (Self-supervised Binary Neural Networks Using Distillation Loss)

This is the official pytorch implementation of our paper:

"S2-BNN: Bridging the Gap Between Self-Supervised Real and 1-bit Neural Networks via Guided Distribution Calibration" (CVPR 2021)

by Zhiqiang Shen, Zechun Liu, Jie Qin, Lei Huang, Kwang-Ting Cheng and Marios Savvides.

In this paper, we introduce a simple yet effective self-supervised approach using distillation loss for learning efficient binary neural networks. Our proposed method can outperform the simple contrastive learning baseline (MoCo V2) by an absolute gain of 5.5∼15% on ImageNet.

The student models are not restricted to the binary neural networks, you can replace with any efficient/compact models.

Citation

If you find our code is helpful for your research, please cite:

@InProceedings{Shen_2021_CVPR,
	author    = {Shen, Zhiqiang and Liu, Zechun and Qin, Jie and Huang, Lei and Cheng, Kwang-Ting and Savvides, Marios},
	title     = {S2-BNN: Bridging the Gap Between Self-Supervised Real and 1-Bit Neural Networks via Guided Distribution Calibration},
	booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
	year      = {2021}

}

Preparation

1. Requirements:

  • Python
  • PyTorch
  • Torchvision

2. Data:

Training & Testing

To train a model, run the following scripts. All our models are trained with 8 GPUs.

1. Standard Two-Step Training:

Our enhanced MoCo V2:

Step 1:

cd Contrastive_only/step1
python main_moco.py --lr 0.0003 --batch-size 256 --dist-url 'tcp://localhost:10001' --multiprocessing-distributed --world-size 1 --rank 0 [imagenet-folder with train and val folders]  --mlp --moco-t 0.2 --aug-plus --cos -j 48  

Step 2:

cd Contrastive_only/step2
python main_moco.py --lr 0.0003 --batch-size 256 --dist-url 'tcp://localhost:10001' --multiprocessing-distributed --world-size 1 --rank 0 [imagenet-folder with train and val folders]  --mlp --moco-t 0.2 --aug-plus --cos -j 48  --model-path ../step1/checkpoint_0199.pth.tar

Our MoCo V2 + Distillation Loss:

Download real-valued teacher network here. We use MoCo V2 800-epoch pretrained model, while you can choose other stronger self-supervised models as the teachers.

Step 1:

cd Contrastive+Distillation/step1
python main_moco.py --lr 0.0003 --batch-size 256 --dist-url 'tcp://localhost:10001' --multiprocessing-distributed --world-size 1 --rank 0 [imagenet-folder with train and val folders] --mlp --moco-t 0.2 --aug-plus --cos -j 48 --wd 0  --teacher-path ../../moco_v2_800ep_pretrain.pth.tar 

Step 2:

cd Contrastive+Distillation/step2
python main_moco.py --lr 0.0003 --batch-size 256 --dist-url 'tcp://localhost:10001' --multiprocessing-distributed --world-size 1 --rank 0 [imagenet-folder with train and val folders] --mlp --moco-t 0.2 --aug-plus --cos -j 48 --wd 0  --teacher-path ../../moco_v2_800ep_pretrain.pth.tar --model-path ../step1/checkpoint_0199.pth.tar

Our Distillation Loss Only:

Step 1:

cd Distillation_only/step1
python main_moco.py --lr 0.0003 --batch-size 256 --dist-url 'tcp://localhost:10001' --multiprocessing-distributed --world-size 1 --rank 0 [imagenet-folder with train and val folders] --mlp --moco-t 0.2 --aug-plus --cos -j 48 --wd 0 --teacher-path ../../moco_v2_800ep_pretrain.pth.tar 

Step 2:

cd Distillation_only/step2
python main_moco.py --lr 0.0003 --batch-size 256 --dist-url 'tcp://localhost:10001' --multiprocessing-distributed --world-size 1 --rank 0 [imagenet-folder with train and val folders] --mlp --moco-t 0.2 --aug-plus --cos -j 48 --wd 0 --teacher-path ../../moco_v2_800ep_pretrain.pth.tar --model-path ../step1/checkpoint_0199.pth.tar

2. Simple One-Step Training (Conventional):

Our enhanced MoCo V2:

cd Contrastive_only/step2
python main_moco.py --lr 0.0003 --batch-size 256 --dist-url 'tcp://localhost:10001' --multiprocessing-distributed --world-size 1 --rank 0 [imagenet-folder with train and val folders] --mlp --moco-t 0.2 --aug-plus --cos -j 48 

Our MoCo V2 + Distillation Loss:

cd Contrastive+Distillation/step2
python main_moco.py --lr 0.0003 --batch-size 256 --dist-url 'tcp://localhost:10001' --multiprocessing-distributed --world-size 1 --rank 0 [imagenet-folder with train and val folders] --mlp --moco-t 0.2 --aug-plus --cos -j 48 --wd 0 --teacher-path ../../moco_v2_800ep_pretrain.pth.tar 

Our Distillation Loss Only:

cd Distillation_only/step2
python main_moco.py --lr 0.0003 --batch-size 256 --dist-url 'tcp://localhost:10001' --multiprocessing-distributed --world-size 1 --rank 0 [imagenet-folder with train and val folders] --mlp --moco-t 0.2 --aug-plus --cos -j 48 --wd 0 --teacher-path ../../moco_v2_800ep_pretrain.pth.tar 

You can replace binary neural networks with any kinds of efficient/compact models on one-step training.

3. Testing:

  • To linearly evaluate a model, run the following script:

    python main_lincls.py  --lr 0.1  -j 24  --batch-size 256  --pretrained  /home/szq/projects/s2bnn/checkpoint_0199.pth.tar --dist-url 'tcp://localhost:10001' --multiprocessing-distributed --world-size 1 --rank 0 [imagenet-folder with train and val folders] 
    

Results & Models

We provide pre-trained models with different training strategies, we report in the table #epochs, OPs, Top-1 accuracy on ImageNet validation set:

Models #Epoch FLOPs (x108) OPs (x108) Top-1 (%) Trained models
MoCo V2 baseline 200 0.12 0.87 46.9 Download
Our enhanced MoCo V2 200 0.12 0.87 52.5 Download
Our MoCo V2 + Distillation Loss 200 0.12 0.87 56.0 Download
Our Distillation Loss Only 200 0.12 0.87 61.5 Download

Training Logs

Our linear evaluation logs are availabe at here.

Acknowledgement

MoCo V2 (Improved Baselines with Momentum Contrastive Learning)

ReActNet (ReActNet: Towards Precise Binary NeuralNetwork with Generalized Activation Functions)

MEAL V2 (MEAL V2: Boosting Vanilla ResNet-50 to 80%+ Top-1 Accuracy on ImageNet without Tricks)

Contact

Zhiqiang Shen, CMU (zhiqiangshen0214 at gmail.com)

Owner
Zhiqiang Shen
Zhiqiang Shen
Official implementation of FCL-taco2: Fast, Controllable and Lightweight version of Tacotron2 @ ICASSP 2021

FCL-Taco2: Towards Fast, Controllable and Lightweight Text-to-Speech synthesis (ICASSP 2021) Paper | Demo Block diagram of FCL-taco2, where the decode

Disong Wang 39 Sep 28, 2022
A simple and extensible library to create Bayesian Neural Network layers on PyTorch.

Blitz - Bayesian Layers in Torch Zoo BLiTZ is a simple and extensible library to create Bayesian Neural Network Layers (based on whats proposed in Wei

Pi Esposito 722 Jan 08, 2023
Node Dependent Local Smoothing for Scalable Graph Learning

Node Dependent Local Smoothing for Scalable Graph Learning Requirements Environments: Xeon Gold 5120 (CPU), 384GB(RAM), TITAN RTX (GPU), Ubuntu 16.04

Wentao Zhang 15 Nov 28, 2022
"Graph Neural Controlled Differential Equations for Traffic Forecasting", AAAI 2022

Graph Neural Controlled Differential Equations for Traffic Forecasting Setup Python environment for STG-NCDE Install python environment $ conda env cr

Jeongwhan Choi 55 Dec 28, 2022
Contrastive unpaired image-to-image translation, faster and lighter training than cyclegan (ECCV 2020, in PyTorch)

Contrastive Unpaired Translation (CUT) video (1m) | video (10m) | website | paper We provide our PyTorch implementation of unpaired image-to-image tra

1.7k Dec 27, 2022
MAME is a multi-purpose emulation framework.

MAME's purpose is to preserve decades of software history. As electronic technology continues to rush forward, MAME prevents this important "vintage" software from being lost and forgotten.

Michael Murray 6 Oct 25, 2020
Source code for deep symbolic optimization.

Update July 10, 2021: This repository now supports an additional symbolic optimization task: learning symbolic policies for reinforcement learning. Th

Brenden Petersen 290 Dec 25, 2022
Clustergram - Visualization and diagnostics for cluster analysis in Python

Clustergram Visualization and diagnostics for cluster analysis Clustergram is a diagram proposed by Matthias Schonlau in his paper The clustergram: A

Martin Fleischmann 96 Dec 26, 2022
classify fashion-mnist dataset with pytorch

Fashion-Mnist Classifier with PyTorch Inference 1- clone this repository: git clone https://github.com/Jhamed7/Fashion-Mnist-Classifier.git 2- Instal

1 Jan 14, 2022
Replication Package for AequeVox:Automated Fariness Testing for Speech Recognition Systems

AequeVox Replication Package for AequeVox:Automated Fariness Testing for Speech Recognition Systems README under development. Python Packages Required

Sai Sathiesh 2 Aug 28, 2022
MoCoPnet - Deformable 3D Convolution for Video Super-Resolution

Deformable 3D Convolution for Video Super-Resolution Pytorch implementation of l

Xinyi Ying 28 Dec 15, 2022
Provide partial dates and retain the date precision through processing

Prefix date parser This is a helper class to parse dates with varied degrees of precision. For example, a data source might state a date as 2001, 2001

Friedrich Lindenberg 13 Dec 14, 2022
Semantically Contrastive Learning for Low-light Image Enhancement

Semantically Contrastive Learning for Low-light Image Enhancement Here, we propose an effective semantically contrastive learning paradigm for Low-lig

48 Dec 16, 2022
Official code for Next Check-ins Prediction via History and Friendship on Location-Based Social Networks (MDM 2018)

MUC Next Check-ins Prediction via History and Friendship on Location-Based Social Networks (MDM 2018) Performance Details for Accuracy: | Dataset

Yijun Su 3 Oct 09, 2022
Context Axial Reverse Attention Network for Small Medical Objects Segmentation

CaraNet: Context Axial Reverse Attention Network for Small Medical Objects Segmentation This repository contains the implementation of a novel attenti

401 Dec 23, 2022
X-modaler is a versatile and high-performance codebase for cross-modal analytics.

X-modaler X-modaler is a versatile and high-performance codebase for cross-modal analytics. This codebase unifies comprehensive high-quality modules i

910 Dec 28, 2022
Papers about explainability of GNNs

Papers about explainability of GNNs

Dongsheng Luo 236 Jan 04, 2023
PSTR: End-to-End One-Step Person Search With Transformers (CVPR2022)

PSTR (CVPR2022) This code is an official implementation of "PSTR: End-to-End One-Step Person Search With Transformers (CVPR2022)". End-to-end one-step

Jiale Cao 28 Dec 13, 2022
PyTorch implementation of Soft-DTW: a Differentiable Loss Function for Time-Series in CUDA

Soft DTW Loss Function for PyTorch in CUDA This is a Pytorch Implementation of Soft-DTW: a Differentiable Loss Function for Time-Series which is batch

Keon Lee 76 Dec 20, 2022
Tensorflow implementation of ID-Unet: Iterative Soft and Hard Deformation for View Synthesis.

ID-Unet: Iterative-view-synthesis(CVPR2021 Oral) Tensorflow implementation of ID-Unet: Iterative Soft and Hard Deformation for View Synthesis. Overvie

17 Aug 23, 2022