10th place solution for Google Smartphone Decimeter Challenge at kaggle.

Overview

Under refactoring

10th place solution for Google Smartphone Decimeter Challenge at kaggle.

Google Smartphone Decimeter Challenge

Global Navigation Satellite System (GNSS) provides raw signals, which the GPS chipset uses to compute a position.
Current mobile phones only offer 3-5 meters of positioning accuracy. While useful in many cases,
it can create a “jumpy” experience. For many use cases the results are not fine nor stable enough to be reliable.

This competition, hosted by the Android GPS team, is being presented at the ION GNSS+ 2021 Conference.
They seek to advance research in smartphone GNSS positioning accuracy
and help people better navigate the world around them.

In this competition, you'll use data collected from the host team’s own Android phones
to compute location down to decimeter or even centimeter resolution, if possible.
You'll have access to precise ground truth, raw GPS measurements,
and assistance data from nearby GPS stations, in order to train and test your submissions.
  • Predictions with host baseline for highway area(upper figure) are really good, but for downtown area(lower figure) are noisy due to the effect of Multipath. input_highway input_downtown

Overview

  • Predicting the Noise, Noise = Ground Truth - Baseline, like denoising in computer vision
  • Using the speed latDeg(t + dt) - latDeg(t)/dt as input instead of the absolute position for preventing overfitting on the train dataset.
  • Making 2D image input with Short Time Fourier Transform, STFT, and then using ImageNet convolutional neural network

image-20210806172801198 best_vs_hosbaseline

STFT and Conv Network Part

  • Input: Using librosa, generating STFT for both latDeg&lngDeg speeds.
    • Each phone sequence are split into 256 seconds sequence then STFT with n_tft=256, hop_length=1 and win_length=16 , result in (256, 127, 2) feature for each degree. The following 2D images are generated from 1D sequence.

image-20210806174449510

  • Model: Regression and Segmentation
    • Regression: EfficientNet B3, predict latDeg&lngDeg noise,
    • Segmentation: Unet ++ with EfficientNet encoder(segmentation pyroch) , predict stft noise
      • segmentation prediction + input STFT -> inverse STFT -> prediction of latDeg&lngDeg speeds

      • this speed prediction was used for:

        1. Low speed mask; The points of low speed area are replaced with its median.
        2. Speed disagreement mask: If the speed from position prediction and this speed prediction differ a lot, remove such points and interpolate.
      • prediction example for the segmentation. segmentation segmentation2

LightGBM Part

  • Input: IMU data excluding magnetic filed feature
    • also excluding y acceleration and z gyro because of phone mounting condition
    • adding moving average as additional features, window_size=5, 15, 45
  • Predict latDeg&lngDeg noise

KNN at downtown Part

similar to Snap to Grid, but using both global and local feature. Local re-ranking comes from the host baseline of GLR2021

  • Use train ground truth as database
  • Global search: query(latDeg&lngDeg) -> find 10 candidates
  • Local re-ranking: query(latDeg&lngDeg speeds and its moving averages) -> find 3 candidates -> taking mean over candidates

Public Post Process Part

There are lots of nice and effective PPs in public notebooks. Thanks to the all authors. I used the following notebooks.

score

  • Check each idea with late submissions.
  • actually conv position pred part implemented near deadline, before that I used only the segmentation model for STFT image.
status Host baseline + Public PP conv position pred gbm speed mask knn global knn local Private Board Score
1 day before deadline 3.07323
10 hours before deadline 2.80185
my best submission 2.61693
late sub 5.423
late sub 3.61910
late sub 3.28516
late sub 3.19016
late sub 2.81074
late sub 2.66377

How to run

environment

  • Ubuntu 18.04
  • Python with Anaconda
  • NVIDIA GPUx1

Data Preparation

First, download the data, here, and then place it like below.

../input/
    └ google-smartphone-decimeter-challenge/

During run, temporary cached will be stored under ../data/ and outputs will be stored under ../working/ through hydra.

Code&Pacakage Installation

# clone project
git clone https://github.com/Fkaneko/kaggle_Google_Smartphone_Decimeter_Challenge

# install project
cd kaggle_Google_Smartphone_Decimeter_Challenge
conda create -n gsdc_conv python==3.8.0
yes | bash install.sh
# at my case I need an additional run of `yes | bash install.sh` for installation.

Training/Testing

3 different models

  • for conv training, python train.py at each branch. Please check the src/config/config.yaml for the training configuration.
  • for LightGBM position you need mv ./src/notebook/lightgbm_position_prediction.ipynb ./ and then starting juypter notebook.
model branch training test
conv stft segmentation main ./train.py ./test.py
conv position conv_position ./train.py ./test.py
LightGBM position main ./src/notebook/lightgbm_position_prediction.ipynb included training notebook

Testing

10th place solution trained weights

I've uploaded pretrained weights as kaggle dataset, here. So extract it on ./ and you can see ./model_weights. And then running python test.py yields submission.csv. This csv will score ~2.61 at kaggle private dataset, which equals to 10th place.

your trained weights

For conv stft segmentation please change paths at the config, src/config/test_weights/compe_sub_github.yaml, and then run followings.

# at main branch
python test.py  \
     conv_pred_path="your conv position prediction csv path"\
     gbm_pred_path="your lightgbm position prediction path"

Regarding, conv_pred_path and gbm_pred_path, you need to create each prediction csv with the table above before run this code. Or you can use mv prediction results on the same kaggle dataset as pretrained weights.

License

Code

Apache 2.0

Dataset

Please check the kaggle page -> https://www.kaggle.com/c/google-smartphone-decimeter-challenge/rules

pretrained weights

These trained weights were generated from ImageNet pretrained weights. So please check ImageNet license if you use pretrained weights for a serious case.

An implementation of Deep Graph Infomax (DGI) in PyTorch

DGI Deep Graph Infomax (Veličković et al., ICLR 2019): https://arxiv.org/abs/1809.10341 Overview Here we provide an implementation of Deep Graph Infom

Petar Veličković 491 Jan 03, 2023
DSAC* for Visual Camera Re-Localization (RGB or RGB-D)

DSAC* for Visual Camera Re-Localization (RGB or RGB-D) Introduction Installation Data Structure Supported Datasets 7Scenes 12Scenes Cambridge Landmark

Visual Learning Lab 143 Dec 22, 2022
Makes patches from huge resolution .svs slide files using openslide

openslide_patcher Makes patches from huge resolution .svs slide files using openslide Example collage I made from outputs:

2 Dec 23, 2021
POT : Python Optimal Transport

POT: Python Optimal Transport This open source Python library provide several solvers for optimization problems related to Optimal Transport for signa

Python Optimal Transport 1.7k Dec 31, 2022
Source code for GNN-LSPE (Graph Neural Networks with Learnable Structural and Positional Representations)

Graph Neural Networks with Learnable Structural and Positional Representations Source code for the paper "Graph Neural Networks with Learnable Structu

Vijay Prakash Dwivedi 180 Dec 22, 2022
Happywhale - Whale and Dolphin Identification Silver🥈 Solution (26/1588)

Kaggle-Happywhale Happywhale - Whale and Dolphin Identification Silver 🥈 Solution (26/1588) 竞赛方案思路 图像数据预处理-标志性特征图片裁剪:首先根据开源的标注数据训练YOLOv5x6目标检测模型,将训练集

Franxx 20 Nov 14, 2022
Drslmarkov - Distributionally Robust Structure Learning for Discrete Pairwise Markov Networks

Distributionally Robust Structure Learning for Discrete Pairwise Markov Networks

1 Nov 24, 2022
NeoPlay is the project dedicated to ESport events.

NeoPlay is the project dedicated to ESport events. On this platform users can participate in tournaments with prize pools as well as create their own tournaments.

3 Dec 18, 2021
Visual Tracking by TridenAlign and Context Embedding

Visual Tracking by TridentAlign and Context Embedding (TACT) Test code for "Visual Tracking by TridentAlign and Context Embedding" Janghoon Choi, Juns

Janghoon Choi 32 Aug 25, 2021
abess: Fast Best-Subset Selection in Python and R

abess: Fast Best-Subset Selection in Python and R Overview abess (Adaptive BEst Subset Selection) library aims to solve general best subset selection,

297 Dec 21, 2022
Pmapper is a super-resolution and deconvolution toolkit for python 3.6+

pmapper pmapper is a super-resolution and deconvolution toolkit for python 3.6+. PMAP stands for Poisson Maximum A-Posteriori, a highly flexible and a

NASA Jet Propulsion Laboratory 8 Nov 06, 2022
TensorFlow implementation of original paper : https://github.com/hszhao/PSPNet

Keras implementation of PSPNet(caffe) Implemented Architecture of Pyramid Scene Parsing Network in Keras. For the best compability please use Python3.

VladKry 386 Dec 29, 2022
50-days-of-Statistics-for-Data-Science - This repository consist of a 50-day program

50-days-of-Statistics-for-Data-Science - This repository consist of a 50-day program. All the statistics required for the complete understanding of data science will be uploaded in this repository.

komal_lamba 22 Dec 09, 2022
Code for CVPR2021 paper "Learning Salient Boundary Feature for Anchor-free Temporal Action Localization"

AFSD: Learning Salient Boundary Feature for Anchor-free Temporal Action Localization This is an official implementation in PyTorch of AFSD. Our paper

Tencent YouTu Research 146 Dec 24, 2022
Simple improvement of VQVAE that allow to generate x2 sized images compared to baseline

vqvae_dwt_distiller.pytorch Simple improvement of VQVAE that allow to generate x2 sized images compared to baseline. It allows to generate 512x512 ima

Sergei Belousov 25 Jul 19, 2022
Scheme for training and applying a label propagation framework

Factorisation-based Image Labelling Overview This is a scheme for training and applying the factorisation-based image labelling (FIL) framework. Some

Wellcome Centre for Human Neuroimaging 2 Dec 17, 2021
Official implementation of the NRNS paper: No RL, No Simulation: Learning to Navigate without Navigating

No RL No Simulation (NRNS) Official implementation of the NRNS paper: No RL, No Simulation: Learning to Navigate without Navigating NRNS is a heriarch

Meera Hahn 20 Nov 29, 2022
Leveraging OpenAI's Codex to solve cornerstone problems in Music

Music-Codex Leveraging OpenAI's Codex to solve cornerstone problems in Music Please NOTE: Presented generated samples were created by OpenAI's Codex P

Alex 2 Mar 11, 2022
A Unified Generative Framework for Various NER Subtasks.

This is the code for ACL-ICJNLP2021 paper A Unified Generative Framework for Various NER Subtasks. Install the package in the requirements.txt, then u

177 Jan 05, 2023
UnpNet - Rethinking 3-D LiDAR Point Cloud Segmentation(IEEE TNNLS)

UnpNet Citation Please cite the following paper if you use this repository in your reseach. @article {PMID:34914599, Title = {Rethinking 3-D LiDAR Po

Shijie Li 4 Jul 15, 2022