AdaShare: Learning What To Share For Efficient Deep Multi-Task Learning

Related tags

Deep LearningAdaShare
Overview

AdaShare: Learning What To Share For Efficient Deep Multi-Task Learning (NeurIPS 2020)

Introduction

alt text

AdaShare is a novel and differentiable approach for efficient multi-task learning that learns the feature sharing pattern to achieve the best recognition accuracy, while restricting the memory footprint as much as possible. Our main idea is to learn the sharing pattern through a task-specific policy that selectively chooses which layers to execute for a given task in the multi-task network. In other words, we aim to obtain a single network for multi-task learning that supports separate execution paths for different tasks.

Here is the link for our arxiv version.

Welcome to cite our work if you find it is helpful to your research.

@article{sun2020adashare,
  title={Adashare: Learning what to share for efficient deep multi-task learning},
  author={Sun, Ximeng and Panda, Rameswar and Feris, Rogerio and Saenko, Kate},
  journal={Advances in Neural Information Processing Systems},
  volume={33},
  year={2020}
}

Experiment Environment

Our implementation is in Pytorch. We train and test our model on 1 Tesla V100 GPU for NYU v2 2-task, CityScapes 2-task and use 2 Tesla V100 GPUs for NYU v2 3-task and Tiny-Taskonomy 5-task.

We use python3.6 and please refer to this link to create a python3.6 conda environment.

Install the listed packages in the virual environment:

conda install pytorch torchvision cudatoolkit=10.2 -c pytorch
conda install matplotlib
conda install -c menpo opencv
conda install pillow
conda install -c conda-forge tqdm
conda install -c anaconda pyyaml
conda install scikit-learn
conda install -c anaconda scipy
pip install tensorboardX

Datasets

Please download the formatted datasets for NYU v2 here

The formatted CityScapes can be found here.

Download Tiny-Taskonomy as instructed by its GitHub.

The formatted DomainNet can be found here.

Remember to change the dataroot to your local dataset path in all yaml files in the ./yamls/.

Training

Policy Learning Phase

Please execute train.py for policy learning, using the command

python train.py --config <yaml_file_name> --gpus <gpu ids>

For example, python train.py --config yamls/adashare/nyu_v2_2task.yml --gpus 0.

Sample yaml files are under yamls/adashare

Note: use domainnet branch for experiments on DomainNet, i.e. python train_domainnet.py --config <yaml_file_name> --gpus <gpu ids>

Retrain Phase

After Policy Learning Phase, we sample 8 different architectures and execute re-train.py for retraining.

python re-train.py --config <yaml_file_name> --gpus <gpu ids> --exp_ids <random seed id>

where we use different --exp_ids to specify different random seeds and generate different architectures. The best performance of all 8 runs is reported in the paper.

For example, python re-train.py --config yamls/adashare/nyu_v2_2task.yml --gpus 0 --exp_ids 0.

Note: use domainnet branch for experiments on DomainNet, i.e. python re-train_domainnet.py --config <yaml_file_name> --gpus <gpu ids>

Test/Inference

After Retraining Phase, execute test.py for get the quantitative results on the test set.

python test.py --config <yaml_file_name> --gpus <gpu ids> --exp_ids <random seed id>

For example, python test.py --config yamls/adashare/nyu_v2_2task.yml --gpus 0 --exp_ids 0.

We provide our trained checkpoints as follows:

  1. Please download our model in NYU v2 2-Task Learning
  2. Please donwload our model in CityScapes 2-Task Learning
  3. Please download our model in NYU v2 3-Task Learning

To use these provided checkpoints, please download them to ../experiments/checkpoints/ and uncompress there. Use the following command to test

python test.py --config yamls/adashare/nyu_v2_2task_test.yml --gpus 0 --exp_ids 0
python test.py --config yamls/adashare/cityscapes_2task_test.yml --gpus 0 --exp_ids 0
python test.py --config yamls/adashare/nyu_v2_3task_test.yml --gpus 0 --exp_ids 0

Test with our pre-trained checkpoints

We also provide some sample images to easily test our model for nyu v2 3 tasks.

Please download our model in NYU v2 3-Task Learning

Execute test_sample.py to test on sample images in ./nyu_v2_samples, using the command

python test_sample.py --config  yamls/adashare/nyu_v2_3task_test.yml --gpus 0

It will print the average quantitative results of sample images.

Note

If any link is invalid or any question, please email [email protected]

Kaggle: Cell Instance Segmentation

Kaggle: Cell Instance Segmentation The goal of this challenge is to detect cells in microscope images. with simple view on how many cels have been ann

Jirka Borovec 9 Aug 12, 2022
ReSSL: Relational Self-Supervised Learning with Weak Augmentation

ReSSL: Relational Self-Supervised Learning with Weak Augmentation This repository contains PyTorch evaluation code, training code and pretrained model

mingkai 45 Oct 25, 2022
Semantic-aware Grad-GAN for Virtual-to-Real Urban Scene Adaption

SG-GAN TensorFlow implementation of SG-GAN. Prerequisites TensorFlow (implemented in v1.3) numpy scipy pillow Getting Started Train Prepare dataset. W

lplcor 61 Jun 07, 2022
Implementation of Vision Transformer, a simple way to achieve SOTA in vision classification with only a single transformer encoder, in Pytorch

Implementation of Vision Transformer, a simple way to achieve SOTA in vision classification with only a single transformer encoder, in Pytorch

Phil Wang 12.6k Jan 09, 2023
Official PyTorch implementation of "Preemptive Image Robustification for Protecting Users against Man-in-the-Middle Adversarial Attacks" (AAAI 2022)

Preemptive Image Robustification for Protecting Users against Man-in-the-Middle Adversarial Attacks This is the code for reproducing the results of th

2 Dec 27, 2021
Computer Vision and Pattern Recognition, NUS CS4243, 2022

CS4243_2022 Computer Vision and Pattern Recognition, NUS CS4243, 2022 Cloud Machine #1 : Google Colab (Free GPU) Follow this Notebook installation : h

Xavier Bresson 142 Dec 15, 2022
Repo for our ICML21 paper Unsupervised Learning of Visual 3D Keypoints for Control

Unsupervised Learning of Visual 3D Keypoints for Control [Project Website] [Paper] Boyuan Chen1, Pieter Abbeel1, Deepak Pathak2 1UC Berkeley 2Carnegie

Boyuan Chen 34 Jul 22, 2022
使用yolov5训练自己数据集(详细过程)并通过flask部署

使用yolov5训练自己的数据集(详细过程)并通过flask部署 依赖库 torch torchvision numpy opencv-python lxml tqdm flask pillow tensorboard matplotlib pycocotools Windows,请使用 pycoc

HB.com 19 Dec 28, 2022
This tutorial aims to learn the basics of deep learning by hands, and master the basics through combination of lectures and exercises

2021-Deep-learning This tutorial aims to learn the basics of deep learning by hands, and master the basics through combination of paper and exercises.

108 Feb 24, 2022
A TensorFlow implementation of the Mnemonic Descent Method.

MDM A Tensorflow implementation of the Mnemonic Descent Method. Mnemonic Descent Method: A recurrent process applied for end-to-end face alignment G.

123 Oct 07, 2022
UIUCTF 2021 Public Challenge Repository

UIUCTF-2021-Public UIUCTF 2021 Public Challenge Repository Notes: every challenge folder contains a challenge.yml file in the format for ctfcli, CTFd'

SIGPwny 15 Nov 03, 2022
Official PyTorch implementation of Joint Object Detection and Multi-Object Tracking with Graph Neural Networks

This is the official PyTorch implementation of our paper: "Joint Object Detection and Multi-Object Tracking with Graph Neural Networks". Our project website and video demos are here.

Richard Wang 443 Dec 06, 2022
KSAI Lite is a deep learning inference framework of kingsoft, based on tensorflow lite

KSAI Lite is a deep learning inference framework of kingsoft, based on tensorflow lite

80 Dec 27, 2022
CPPE - 5 (Medical Personal Protective Equipment) is a new challenging object detection dataset

CPPE - 5 CPPE - 5 (Medical Personal Protective Equipment) is a new challenging dataset with the goal to allow the study of subordinate categorization

Rishit Dagli 53 Dec 17, 2022
In this project, we'll be making our own screen recorder in Python using some libraries.

Screen Recorder in Python Project Description: In this project, we'll be making our own screen recorder in Python using some libraries. Requirements:

Hassan Shahzad 4 Jan 24, 2022
QueryInst: Parallelly Supervised Mask Query for Instance Segmentation

QueryInst is a simple and effective query based instance segmentation method driven by parallel supervision on dynamic mask heads, which outperforms previous arts in terms of both accuracy and speed.

Hust Visual Learning Team 386 Jan 08, 2023
Interpretable and Generalizable Person Re-Identification with Query-Adaptive Convolution and Temporal Lifting

QAConv Interpretable and Generalizable Person Re-Identification with Query-Adaptive Convolution and Temporal Lifting This PyTorch code is proposed in

Shengcai Liao 166 Dec 28, 2022
Pansharpening by convolutional neural networks in the full resolution framework

Z-PNN: Zoom Pansharpening Neural Network Pansharpening by convolutional neural networks in the full resolution framework is a deep learning method for

20 Nov 24, 2022
This repository provides code for "On Interaction Between Augmentations and Corruptions in Natural Corruption Robustness".

On Interaction Between Augmentations and Corruptions in Natural Corruption Robustness This repository provides the code for the paper On Interaction B

Meta Research 33 Dec 08, 2022