This repository provides code for "On Interaction Between Augmentations and Corruptions in Natural Corruption Robustness".

Overview

On Interaction Between Augmentations and Corruptions in Natural Corruption Robustness

This repository provides the code for the paper On Interaction Between Augmentations and Corruptions in Natural Corruption Robustness. This paper studies how perceptual similarity between a set of training augmentations and a set of test corruptions affects test error on those corruptions and shows that common augmentation schemes often generalize poorly to perceptually dissimilar corruptions.

The repository is divided into three parts. First, the Jupyter notebook minimal_sample_distance.ipynb illustrates how to calculate the measure of distance between augmentations and corruptions proposed in the paper. Second, imagenet_c_bar/ provides code to generate or test on the datasets CIFAR-10-C-bar and ImageNet-C-bar, which are algorithmically chosen to be dissimilar from CIFAR-10/ImageNet-C and are used to study generalization. Finally, experiments/ provides code to reproduce the experiments in the paper. Usage of these latter two is described in their respective READMEs.

This paper:

  1. Defines the minimal sample distance, which provides a measure of similarity on a perceptual feature space f(t) between augmentations and corruptions, extracted using a pre-trained neural network. This measure is assymetric to account for the fact that augmentation distributions are typically broader than any one corruption distribution but can still lead to good error if they produce augmentations that are perceptually similar to the corruption:

  1. Shows percetual similarity between train-time augmentations and test-time corruptions is often predictive of corruption error, across several common corruptions and augmentations. A large set of artificial augmentation schemes, called the augmentation powerset, is also introduced to better analyze the correlation:

  1. Introduces a new set of corruptions designed to be perceptually dissimilar from the common benchmark CIFAR10/ImageNet-C. These new corruptions are chosen algorithmically from a set of 30 natural, human interpretable corruptions using the perceptual feature space defined above.

  1. Shows that several common data augmentation schemes that improve corruption robustness perform worse on the new dataset, suggesting that generalization is often poor to dissimilar corruptions. Here AutoAugment, Stylized-ImageNet, AugMix, Patch Gaussian, and ANT3x3 are studied.

* Base example images copyright Sehee Park and Chenxu Han.

License

augmentation-corruption is released under the MIT license. Please see the LICENSE file for more information.

Contributing

We actively welcome your pull requests! Please see CONTRIBUTING.md and CODE_OF_CONDUCT.md for more info.

References

Cubuk, E. D., Zoph, B., Mane ́, D., Vasudevan, V., and Le, Q. V. AutoAugment: Learning augmentation strategies from data. In CVPR, 2019.

Geirhos, R., Rubisch, P., Michaelis, C., Bethge, M., Wichmann, F. A., and Brendel, W. ImageNet-trained CNNs are biased towards texture; increasing shape bias improves accuracy and robustness. In ICLR, 2019.

Hendrycks, D. and Dietterich, T. Benchmarking neural network robustness to common corruptions and perturbations. In ICLR, 2018.

Hendrycks, D., Mu, N., Cubuk, E. D., Zoph, B., Gilmer, J., and Lakshminarayanan, B. AugMix: A simple data processing method to improve robustness and uncertainty. In ICLR, 2019.

Lopes, R. G., Yin, D., Poole, B., Gilmer, J., and Cubuk, E. D. Improving robustness without sacrificing accuracy with Patch Gaussian augmentation. arXiv preprint arXiv:1906.02611, 2019.

Rusak, E., Schott, L., Zimmermann, R., Bitterwolf, J., Bringmann, O., Bethge, M., and Brendel, W. A simple way to make neural networks robust against diverse image corruptions. arXiv preprint arXiv:2001.06057, 2020.

Owner
Meta Research
Meta Research
1st ranked 'driver careless behavior detection' for AI Online Competition 2021, hosted by MSIT Korea.

2021AICompetition-03 본 repo 는 mAy-I Inc. 팀으로 참가한 2021 인공지능 온라인 경진대회 중 [이미지] 운전 사고 예방을 위한 운전자 부주의 행동 검출 모델] 태스크 수행을 위한 레포지토리입니다. mAy-I 는 과학기술정보통신부가 주최하

Junhyuk Park 9 Dec 01, 2022
[CVPR 2021] Unsupervised Degradation Representation Learning for Blind Super-Resolution

DASR Pytorch implementation of "Unsupervised Degradation Representation Learning for Blind Super-Resolution", CVPR 2021 [arXiv] Overview Requirements

Longguang Wang 318 Dec 24, 2022
Simple and Distributed Machine Learning

Synapse Machine Learning SynapseML (previously MMLSpark) is an open source library to simplify the creation of scalable machine learning pipelines. Sy

Microsoft 3.9k Dec 30, 2022
(ImageNet pretrained models) The official pytorch implemention of the TPAMI paper "Res2Net: A New Multi-scale Backbone Architecture"

Res2Net The official pytorch implemention of the paper "Res2Net: A New Multi-scale Backbone Architecture" Our paper is accepted by IEEE Transactions o

Res2Net Applications 928 Dec 29, 2022
This repository is an implementation of our NeurIPS 2021 paper (Stylized Dialogue Generation with Multi-Pass Dual Learning) in PyTorch.

MPDL---TODO This repository is an implementation of our NeurIPS 2021 paper (Stylized Dialogue Generation with Multi-Pass Dual Learning) in PyTorch. Ci

CodebaseLi 3 Nov 27, 2022
This project helps to colorize grayscale images using multiple exemplars.

Multiple Exemplar-based Deep Colorization (Pytorch Implementation) Pretrained Model [Jitendra Chautharia](IIT Jodhpur)1,3, Prerequisites Python 3.6+ N

jitendra chautharia 3 Aug 05, 2022
A generator of point clouds dataset for PyPipes.

CloudPipesGenerator Documentation | Colab Notebooks | Video Tutorials | Master Degree website A generator of point clouds dataset for PyPipes. TODO Us

1 Jan 13, 2022
Code accompanying the NeurIPS 2021 paper "Generating High-Quality Explanations for Navigation in Partially-Revealed Environments"

Generating High-Quality Explanations for Navigation in Partially-Revealed Environments This work presents an approach to explainable navigation under

RAIL Group @ George Mason University 1 Oct 28, 2022
Keras community contributions

keras-contrib : Keras community contributions Keras-contrib is deprecated. Use TensorFlow Addons. The future of Keras-contrib: We're migrating to tens

Keras 1.6k Dec 21, 2022
PartImageNet is a large, high-quality dataset with part segmentation annotations

PartImageNet: A Large, High-Quality Dataset of Parts We will release our dataset and scripts soon after cleaning and approval. Introduction PartImageN

Ju He 77 Nov 30, 2022
PyTorch-centric library for evaluating and enhancing the robustness of AI technologies

Responsible AI Toolbox A library that provides high-quality, PyTorch-centric tools for evaluating and enhancing both the robustness and the explainabi

24 Dec 22, 2022
An end-to-end implementation of intent prediction with Metaflow and other cool tools

You Don't Need a Bigger Boat An end-to-end (Metaflow-based) implementation of an intent prediction flow for kids who can't MLOps good and wanna learn

Jacopo Tagliabue 614 Dec 31, 2022
Anchor Retouching via Model Interaction for Robust Object Detection in Aerial Images

Anchor Retouching via Model Interaction for Robust Object Detection in Aerial Images In this paper, we present an effective Dynamic Enhancement Anchor

13 Dec 09, 2022
Code of Classification Saliency-Based Rule for Visible and Infrared Image Fusion

CSF Code of Classification Saliency-Based Rule for Visible and Infrared Image Fusion Tips: For testing: CUDA_VISIBLE_DEVICES=0 python main.py For trai

Han Xu 14 Oct 31, 2022
This repository contains code for the paper "Disentangling Label Distribution for Long-tailed Visual Recognition", published at CVPR' 2021

Disentangling Label Distribution for Long-tailed Visual Recognition (CVPR 2021) Arxiv link Blog post This codebase is built on Causal Norm. Install co

Hyperconnect 85 Oct 18, 2022
Vector Neurons: A General Framework for SO(3)-Equivariant Networks

Vector Neurons: A General Framework for SO(3)-Equivariant Networks Created by Congyue Deng, Or Litany, Yueqi Duan, Adrien Poulenard, Andrea Tagliasacc

Congyue Deng 332 Dec 29, 2022
Fine-tune pretrained Convolutional Neural Networks with PyTorch

Fine-tune pretrained Convolutional Neural Networks with PyTorch. Features Gives access to the most popular CNN architectures pretrained on ImageNet. A

Alex Parinov 694 Nov 23, 2022
The official implementation of CircleNet: Anchor-free Detection with Circle Representation, MICCAI 2030

CircleNet: Anchor-free Detection with Circle Representation The official implementation of CircleNet, MICCAI 2020 [PyTorch] [project page] [MICCAI pap

The Biomedical Data Representation and Learning Lab 45 Nov 18, 2022
PyTorch implementation of PNASNet-5 on ImageNet

PNASNet.pytorch PyTorch implementation of PNASNet-5. Specifically, PyTorch code from this repository is adapted to completely match both my implemetat

Chenxi Liu 314 Nov 25, 2022
PyTorch implementation of EGVSR: Efficcient & Generic Video Super-Resolution (VSR)

This is a PyTorch implementation of EGVSR: Efficcient & Generic Video Super-Resolution (VSR), using subpixel convolution to optimize the inference speed of TecoGAN VSR model. Please refer to the offi

789 Jan 04, 2023