KSAI Lite is a deep learning inference framework of kingsoft, based on tensorflow lite

Overview

KSAI Lite

English | 简体中文

Documentation Status Release License

KSAI Lite是一个轻量级、灵活性强、高性能且易于扩展的深度学习推理框架,底层基于tensorflow lite,定位支持包括移动端、嵌入式以及服务器端在内的多硬件平台。

当前KSAI Lite已经应用在金山office内部业务中,并逐步支持金山企业的生产任务和众多外部用户。

快速入门

使用KSAI Lite,只需几个简单的步骤,就可以把模型部署到多种终端设备中,运行高性能的推理任务,使用流程如下所示:

一. 准备模型

KSAI Lite框架直接支持模型结构为tflite模型。 如果您手中的模型是由诸如Caffe、MXNet、PyTorch等框架产出的,那么您可以使用工具将模型转换为tflite格式。

二. 模型优化

KSAI Lite框架基于底层tensorflow lite的优化方法,拥有优秀的加速、优化策略及实现,包含量化、子图融合、Kernel优选等优化手段。优化后的模型更轻量级,耗费资源更少,并且执行速度也更快。

三. 下载或编译

KSAI Lite提供了多平台的官方Release预测库下载,我们优先推荐您直接下载 KSAI Lite预编译库,包括了Linux-X64, Linux-ARM, Linux-MIPS64以及Windows-X64索引库Windows-X64动态链接库。 您也可以根据目标平台选择对应的源码编译方法。KSAI Lite 提供了源码编译脚本,位于 tools/目录下,只需要按照docs/目录下的准备环境说明文档environment setup.md搭建好环境然后切到tools/目录调用编译脚本两个步骤即可一键编译得到目标平台的KSAI Lite预测库。

四. 预测示例

KSAI Lite提供了C++ API,并且提供了相应API的完整使用示例: 目录为tensorflow/lite/examples/reg_test/reg_test.cc 您可以参考示例快速了解使用方法,并集成到您自己的项目中去,也可以参考KSAI-Toolkits该项目。

主要特性

  • 多硬件支持
    • KSAI Lite架构已经验证和完整支持从 Mobile 到 Server 多种硬件平台,包括 intel X86、ARM、华为 Kunpeng 920、龙芯Loongson-3A R3、兆芯C4600、Phytium FT1500a等,且正在不断增加更多新硬件支持。
  • 轻量级部署
    • KSAI Lite在设计上对图优化模块和执行引擎实现了良好的解耦拆分,移动端可以直接部署执行阶段,无任何第三方依赖。
  • 高性能
    • 极致的 ARM及X86 CPU 性能优化:针对不同微架构特点实现kernel的定制,最大发挥计算性能,在主流模型上展现出领先的速度优势。
  • 多模型多算子
    • KSAI Lite和tensorflow训练框架的OP对齐,提供广泛的模型支持能力。
    • 目前已对视觉类模型做到了较为充分的支持,覆盖分类、检测和识别,包含了特色的OCR模型的支持,并在不断丰富中。
  • 强大的图分析和优化能力
    • 不同于常规的移动端预测引擎基于 Python 脚本工具转化模型, Lite 架构上有完整基于 C++ 开发的 IR 及相应 Pass 集合,以支持操作融合,计算剪枝,存储优化,量化计算等多类计算图优化。

持续集成

System X86 Linux ARM Linux MIPS64 Linux windows
CPU(32bit) Build Status - - Build Status
CPU(64bit) Build Status - - Build Status
高通骁龙845 - Build Status - -
华为kunpeng920 - Build Status - -
龙芯Loongson-3A - - Build Status -
兆芯C4600 - Build Status - -
Phytium FT1500a - Build Status - -

交流与反馈

版权和许可证

KSAI-Lite由Apache-2.0 license提供

This is the official implementation of Elaborative Rehearsal for Zero-shot Action Recognition (ICCV2021)

Elaborative Rehearsal for Zero-shot Action Recognition This is an official implementation of: Shizhe Chen and Dong Huang, Elaborative Rehearsal for Ze

DeLightCMU 26 Sep 24, 2022
Official codebase for "B-Pref: Benchmarking Preference-BasedReinforcement Learning" contains scripts to reproduce experiments.

B-Pref Official codebase for B-Pref: Benchmarking Preference-BasedReinforcement Learning contains scripts to reproduce experiments. Install conda env

48 Dec 20, 2022
Model Zoo for MindSpore

Welcome to the Model Zoo for MindSpore In order to facilitate developers to enjoy the benefits of MindSpore framework, we will continue to add typical

MindSpore 226 Jan 07, 2023
An official TensorFlow implementation of “CLCC: Contrastive Learning for Color Constancy” accepted at CVPR 2021.

CLCC: Contrastive Learning for Color Constancy (CVPR 2021) Yi-Chen Lo*, Chia-Che Chang*, Hsuan-Chao Chiu, Yu-Hao Huang, Chia-Ping Chen, Yu-Lin Chang,

Yi-Chen (Howard) Lo 58 Dec 17, 2022
AAAI-22 paper: SimSR: Simple Distance-based State Representationfor Deep Reinforcement Learning

SimSR Code and dataset for the paper SimSR: Simple Distance-based State Representationfor Deep Reinforcement Learning (AAAI-22). Requirements We assum

7 Dec 19, 2022
Code of Periodic Activation Functions Induce Stationarity

Periodic Activation Functions Induce Stationarity This repository is the official implementation of the methods in the publication: L. Meronen, M. Tra

AaltoML 12 Jun 07, 2022
Multi-Task Learning as a Bargaining Game

Nash-MTL Official implementation of "Multi-Task Learning as a Bargaining Game". Setup environment conda create -n nashmtl python=3.9.7 conda activate

Aviv Navon 87 Dec 26, 2022
HW3 ― GAN, ACGAN and UDA

HW3 ― GAN, ACGAN and UDA In this assignment, you are given datasets of human face and digit images. You will need to implement the models of both GAN

grassking100 1 Dec 13, 2021
Yolov5 deepsort inference,使用YOLOv5+Deepsort实现车辆行人追踪和计数,代码封装成一个Detector类,更容易嵌入到自己的项目中

使用YOLOv5+Deepsort实现车辆行人追踪和计数,代码封装成一个Detector类,更容易嵌入到自己的项目中。

813 Dec 31, 2022
Make your master artistic punk avatar through machine learning world famous paintings.

Master-art-punk Make your master artistic punk avatar through machine learning world famous paintings. 通过机器学习世界名画制作属于你的大师级艺术朋克头像 Nowadays, NFT is beco

Philipjhc 53 Dec 27, 2022
Cross-modal Deep Face Normals with Deactivable Skip Connections

Cross-modal Deep Face Normals with Deactivable Skip Connections Victoria Fernández Abrevaya*, Adnane Boukhayma*, Philip H. S. Torr, Edmond Boyer (*Equ

72 Nov 27, 2022
CondLaneNet: a Top-to-down Lane Detection Framework Based on Conditional Convolution

CondLaneNet: a Top-to-down Lane Detection Framework Based on Conditional Convolution This is the official implementation code of the paper "CondLaneNe

Alibaba Cloud 311 Dec 30, 2022
Official PyTorch implementation of "Meta-Learning with Task-Adaptive Loss Function for Few-Shot Learning" (ICCV2021 Oral)

MeTAL - Meta-Learning with Task-Adaptive Loss Function for Few-Shot Learning (ICCV2021 Oral) Sungyong Baik, Janghoon Choi, Heewon Kim, Dohee Cho, Jaes

Sungyong Baik 44 Dec 29, 2022
Several simple examples for popular neural network toolkits calling custom CUDA operators.

Neural Network CUDA Example Several simple examples for neural network toolkits (PyTorch, TensorFlow, etc.) calling custom CUDA operators. We provide

WeiYang 798 Jan 01, 2023
NEO: Non Equilibrium Sampling on the orbit of a deterministic transform

NEO: Non Equilibrium Sampling on the orbit of a deterministic transform Description of the code This repo describes the NEO estimator described in the

0 Dec 01, 2021
Reviatalizing Optimization for 3D Human Pose and Shape Estimation: A Sparse Constrained Formulation

Reviatalizing Optimization for 3D Human Pose and Shape Estimation: A Sparse Constrained Formulation This is the implementation of the approach describ

Taosha Fan 47 Nov 15, 2022
使用yolov5训练自己数据集(详细过程)并通过flask部署

使用yolov5训练自己的数据集(详细过程)并通过flask部署 依赖库 torch torchvision numpy opencv-python lxml tqdm flask pillow tensorboard matplotlib pycocotools Windows,请使用 pycoc

HB.com 19 Dec 28, 2022
Using VideoBERT to tackle video prediction

VideoBERT This repo reproduces the results of VideoBERT (https://arxiv.org/pdf/1904.01766.pdf). Inspiration was taken from https://github.com/MDSKUL/M

75 Dec 14, 2022
using yolox+deepsort for object-tracker

YOLOX_deepsort_tracker yolox+deepsort实现目标跟踪 最新的yolox尝尝鲜~~(yolox正处在频繁更新阶段,因此直接链接yolox仓库作为子模块) Install Clone the repository recursively: git clone --rec

245 Dec 26, 2022
Udacity's CS101: Intro to Computer Science - Building a Search Engine

Udacity's CS101: Intro to Computer Science - Building a Search Engine All soluti

Phillip 0 Feb 26, 2022