使用yolov5训练自己数据集(详细过程)并通过flask部署

Overview

使用yolov5训练自己的数据集(详细过程)并通过flask部署

依赖库

  • torch
  • torchvision
  • numpy
  • opencv-python
  • lxml
  • tqdm
  • flask
  • pillow
  • tensorboard
  • matplotlib
  • pycocotools

Windows,请使用 pycocotools-windows 代替 pycocotools

1.准备数据集

这里以PASCAL VOC数据集为例,提取码: 07wp 将获取的数据集放到datasets目录下 数据集结构如下:

---VOC2012
--------Annotations
---------------xml0
---------------xml1
--------JPEGImages
---------------img0
---------------img1
--------pascal_voc_classes.txt

Annotations为所有的xml文件,JPEGImages为所有的图片文件,pascal_voc_classes.txt为类别文件。

获取标签文件

yolo标签文件的格式如下:

102 0.682813 0.415278 0.237500 0.502778
102 0.914844 0.396528 0.168750 0.451389

第一位 label,为图片中物体的类别
后面四位为图片中物体的位置,(xcenter, ycenter, h, w)即目标物体中心位置的相对坐标和相对高宽
上图中存在两个目标

如果你已经拥有如上的label文件,可直接跳到下一步。 没有如上标签文件,可使用 labelimg 提取码 dbi2 打标签。生成xml格式的label文件,再转为yolo格式的label文件。labelimg的使用非常简单,在此不在赘述。

xml格式的label文件转为yolo格式:

python center/xml_yolo.py

pascal_voc_classes.txt,为你的类别对应的json文件。如下为voc数据集类别格式。

["aeroplane","bicycle", "bird","boat","bottle","bus","car","cat","chair","cow","diningtable","dog","horse","motorbike","person","pottedplant","sheep","sofa","train", "tvmonitor"]

运行上面代码后的路径结构

---VOC2012
--------Annotations
--------JPEGImages
--------pascal_voc_classes.json
---yolodata
--------images
--------labels

2.划分训练集和测试集

训练集和测试集的划分很简单,将原始数据打乱,然后按 9 :1划分为训练集和测试集即可。代码如下:

python center/get_train_val.py
运行上面代码会生成如下路径结构
---VOC2012
--------Annotations
--------JPEGImages
--------pascal_voc_classes.json
---yolodata
--------images
--------labels
---traindata
--------images
----------------train
----------------val
--------labels
----------------train
----------------val
traindata就是最后需要的训练文件

3. 训练模型

yolov5的训练很简单,本文已将代码简化,代码结构如下:

dataset             # 数据集
------traindata     # 训练数据集
inference           # 输入输出接口
------inputs        # 输入数据
------outputs       # 输出数据
config              # 配置文件
------score.yaml    # 训练配置文件
------yolov5l.yaml  # 模型配置文件
models              # 模型代码
runs	            # 日志文件
utils               # 代码文件
weights             # 模型保存路径,last.pt,best.pt
train.py            # 训练代码
detect.py           # 测试代码

score.yaml解释如下:

# train and val datasets (image directory)
train: ./datasets/traindata/images/train/
val: ./datasets/traindata/images/val/
# number of classes
nc: 2
# class names
names: ['苹果','香蕉']
  • train: 为图像数据的train,地址
  • val: 为图像数据的val,地址
  • nc: 为类别个数
  • names: 为类别对应的名称
yolov5l.yaml解释如下:
nc: 2 # number of classes
depth_multiple: 1.0  # model depth multiple
width_multiple: 1.0  # layer channel multiple
anchors:
  - [10,13, 16,30, 33,23]  # P3/8
  - [30,61, 62,45, 59,119]  # P4/16
  - [116,90, 156,198, 373,326]  # P5/32
backbone:
  # [from, number, module, args]
  [[-1, 1, Focus, [64, 3]],  # 1-P1/2
   [-1, 1, Conv, [128, 3, 2]],  # 2-P2/4
   [-1, 3, Bottleneck, [128]],
   [-1, 1, Conv, [256, 3, 2]],  # 4-P3/8
   [-1, 9, BottleneckCSP, [256]],
   [-1, 1, Conv, [512, 3, 2]],  # 6-P4/16
   [-1, 9, BottleneckCSP, [512]],
   [-1, 1, Conv, [1024, 3, 2]], # 8-P5/32
   [-1, 1, SPP, [1024, [5, 9, 13]]],
   [-1, 6, BottleneckCSP, [1024]],  # 10
  ]
head:
  [[-1, 3, BottleneckCSP, [1024, False]],  # 11
   [-1, 1, nn.Conv2d, [na * (nc + 5), 1, 1, 0]],  # 12 (P5/32-large)
   [-2, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 6], 1, Concat, [1]],  # cat backbone P4
   [-1, 1, Conv, [512, 1, 1]],
   [-1, 3, BottleneckCSP, [512, False]],
   [-1, 1, nn.Conv2d, [na * (nc + 5), 1, 1, 0]],  # 17 (P4/16-medium)
   [-2, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 4], 1, Concat, [1]],  # cat backbone P3
   [-1, 1, Conv, [256, 1, 1]],
   [-1, 3, BottleneckCSP, [256, False]],
   [-1, 1, nn.Conv2d, [na * (nc + 5), 1, 1, 0]],  # 22 (P3/8-small)
   [[], 1, Detect, [nc, anchors]],  # Detect(P3, P4, P5)
  ]
  • nc:为目标类别个数
  • depth_multiple 和 width_multiple:控制模型深度和宽度。不同的参数对应:s,m,l,x 模型。
  • anchors: 为对输入的目标框通过k-means聚类产生的基础框,通过这个基础框去预测目标的box。
  • yolov5会自动产生anchors,yolov5采用欧氏距离进行k-means聚类,再使用遗传算法做一系列的变异得到最终的anchors。但是本人采用欧氏距离进行k-means聚类得到的效果不如采用 1 - iou进行k-means聚类的效果。如果想要 1 - iou 进行k-means聚类源码请私聊我。但是效果其实相差无几。
  • backbone: 为图像特征提取部分的网络结构。
  • head: 为最后的预测部分的网络结构

#####train.py配置十分简单: 在这里插入图片描述

我们仅需修改如下参数即可

epoch:         控制训练迭代的次数
batch_size     输入迭代的图片数量
cfg:           配置网络模型路径
data:          训练配置文件路径
weights:       载入模型,进行断点继续训练

终端运行(默认yolov5l)

 python train.py

即可开始训练。

训练过程

训练结果

4. 测试模型

需要需改三个参数
source:        需要检测的images/videos路径
out:		保存结果的路径
weights:       训练得到的模型权重文件的路径
你也可以使用在coco数据集上的权重文件进行测试将他们放到weights文件夹下

提取码:hhbb

终端运行

 python detect.py

即可开始检测。

测试结果

5.通过flask部署

flask的部署是非简单。如果有不明白的可以参考我之前的博客。

阿里云ECS部署python,flask项目,简单易懂,无需nginx和uwsgi

基于yolov3-deepsort-flask的目标检测和多目标追踪web平台

终端运行

 python app.py

即可开始跳转到网页,上传图片进行检测。

Owner
HB.com
HB.com
A clean implementation based on AlphaZero for any game in any framework + tutorial + Othello/Gobang/TicTacToe/Connect4 and more

Alpha Zero General (any game, any framework!) A simplified, highly flexible, commented and (hopefully) easy to understand implementation of self-play

Surag Nair 3.1k Jan 05, 2023
This is project is the implementation of the DeepShift: Towards Multiplication-Less Neural Networks paper

DeepShift This is project is the implementation of the DeepShift: Towards Multiplication-Less Neural Networks paper, that aims to replace multiplicati

Mostafa Elhoushi 88 Dec 23, 2022
The official PyTorch implementation of recent paper - SAINT: Improved Neural Networks for Tabular Data via Row Attention and Contrastive Pre-Training

This repository is the official PyTorch implementation of SAINT. Find the paper on arxiv SAINT: Improved Neural Networks for Tabular Data via Row Atte

Gowthami Somepalli 284 Dec 21, 2022
This is an open-source toolkit for Heterogeneous Graph Neural Network(OpenHGNN) based on DGL [Deep Graph Library] and PyTorch.

This is an open-source toolkit for Heterogeneous Graph Neural Network(OpenHGNN) based on DGL [Deep Graph Library] and PyTorch.

BUPT GAMMA Lab 519 Jan 02, 2023
RepMLP: Re-parameterizing Convolutions into Fully-connected Layers for Image Recognition

RepMLP: Re-parameterizing Convolutions into Fully-connected Layers for Image Recognition (PyTorch) Paper: https://arxiv.org/abs/2105.01883 Citation: @

260 Jan 03, 2023
CUAD

Contract Understanding Atticus Dataset This repository contains code for the Contract Understanding Atticus Dataset (CUAD), a dataset for legal contra

The Atticus Project 273 Dec 17, 2022
World Models with TensorFlow 2

World Models This repo reproduces the original implementation of World Models. This implementation uses TensorFlow 2.2. Docker The easiest way to hand

Zac Wellmer 234 Nov 30, 2022
COVID-VIT: Classification of Covid-19 from CT chest images based on vision transformer models

COVID-ViT COVID-VIT: Classification of Covid-19 from CT chest images based on vision transformer models This code is to response to te MIA-COV19 compe

17 Dec 30, 2022
ACAV100M: Automatic Curation of Large-Scale Datasets for Audio-Visual Video Representation Learning. In ICCV, 2021.

ACAV100M: Automatic Curation of Large-Scale Datasets for Audio-Visual Video Representation Learning This repository contains the code for our ICCV 202

sangho.lee 28 Nov 08, 2022
PyTorch implementation for the visual prior component (i.e. perception module) of the Visually Grounded Physics Learner [Li et al., 2020].

VGPL-Visual-Prior PyTorch implementation for the visual prior component (i.e. perception module) of the Visually Grounded Physics Learner (VGPL). Give

Toru 8 Dec 29, 2022
Oscar and VinVL

Oscar: Object-Semantics Aligned Pre-training for Vision-and-Language Tasks VinVL: Revisiting Visual Representations in Vision-Language Models Updates

Microsoft 938 Dec 26, 2022
[ICCV 2021] Focal Frequency Loss for Image Reconstruction and Synthesis

Focal Frequency Loss - Official PyTorch Implementation This repository provides the official PyTorch implementation for the following paper: Focal Fre

Liming Jiang 460 Jan 04, 2023
Pytorch implementation of set transformer

set_transformer Official PyTorch implementation of the paper Set Transformer: A Framework for Attention-based Permutation-Invariant Neural Networks .

Juho Lee 410 Jan 06, 2023
A standard framework for modelling Deep Learning Models for tabular data

PyTorch Tabular aims to make Deep Learning with Tabular data easy and accessible to real-world cases and research alike.

801 Jan 08, 2023
Pytorch reimplementation of PSM-Net: "Pyramid Stereo Matching Network"

This is a Pytorch Lightning version PSMNet which is based on JiaRenChang/PSMNet. use python main.py to start training. PSM-Net Pytorch reimplementatio

XIAOTIAN LIU 1 Nov 25, 2021
A novel Engagement Detection with Multi-Task Training (ED-MTT) system

A novel Engagement Detection with Multi-Task Training (ED-MTT) system which minimizes MSE and triplet loss together to determine the engagement level of students in an e-learning environment.

Onur Çopur 12 Nov 11, 2022
DNA-RECON { Automatic Web Reconnaissance Tool }

ABOUT TOOL : DNA-RECON is an automatic web reconnaissance tool written in python. This tool made for reconnaissance and information gathering with an

NIKUNJ BHATT 25 Aug 11, 2021
PyTorch implementation of PSPNet

PSPNet with PyTorch Unofficial implementation of "Pyramid Scene Parsing Network" (https://arxiv.org/abs/1612.01105). This repository is just for caffe

Kazuto Nakashima 52 Nov 16, 2022
Small-bets - Ergodic Experiment With Python

Ergodic Experiment Based on this video. Run this experiment with this command: p

Michael Brant 3 Jan 11, 2022
Code and real data for the paper "Counterfactual Temporal Point Processes", available at arXiv.

counterfactual-tpp This is a repository containing code and real data for the paper Counterfactual Temporal Point Processes. Pre-requisites This code

Networks Learning 11 Dec 09, 2022