使用yolov5训练自己数据集(详细过程)并通过flask部署

Overview

使用yolov5训练自己的数据集(详细过程)并通过flask部署

依赖库

  • torch
  • torchvision
  • numpy
  • opencv-python
  • lxml
  • tqdm
  • flask
  • pillow
  • tensorboard
  • matplotlib
  • pycocotools

Windows,请使用 pycocotools-windows 代替 pycocotools

1.准备数据集

这里以PASCAL VOC数据集为例,提取码: 07wp 将获取的数据集放到datasets目录下 数据集结构如下:

---VOC2012
--------Annotations
---------------xml0
---------------xml1
--------JPEGImages
---------------img0
---------------img1
--------pascal_voc_classes.txt

Annotations为所有的xml文件,JPEGImages为所有的图片文件,pascal_voc_classes.txt为类别文件。

获取标签文件

yolo标签文件的格式如下:

102 0.682813 0.415278 0.237500 0.502778
102 0.914844 0.396528 0.168750 0.451389

第一位 label,为图片中物体的类别
后面四位为图片中物体的位置,(xcenter, ycenter, h, w)即目标物体中心位置的相对坐标和相对高宽
上图中存在两个目标

如果你已经拥有如上的label文件,可直接跳到下一步。 没有如上标签文件,可使用 labelimg 提取码 dbi2 打标签。生成xml格式的label文件,再转为yolo格式的label文件。labelimg的使用非常简单,在此不在赘述。

xml格式的label文件转为yolo格式:

python center/xml_yolo.py

pascal_voc_classes.txt,为你的类别对应的json文件。如下为voc数据集类别格式。

["aeroplane","bicycle", "bird","boat","bottle","bus","car","cat","chair","cow","diningtable","dog","horse","motorbike","person","pottedplant","sheep","sofa","train", "tvmonitor"]

运行上面代码后的路径结构

---VOC2012
--------Annotations
--------JPEGImages
--------pascal_voc_classes.json
---yolodata
--------images
--------labels

2.划分训练集和测试集

训练集和测试集的划分很简单,将原始数据打乱,然后按 9 :1划分为训练集和测试集即可。代码如下:

python center/get_train_val.py
运行上面代码会生成如下路径结构
---VOC2012
--------Annotations
--------JPEGImages
--------pascal_voc_classes.json
---yolodata
--------images
--------labels
---traindata
--------images
----------------train
----------------val
--------labels
----------------train
----------------val
traindata就是最后需要的训练文件

3. 训练模型

yolov5的训练很简单,本文已将代码简化,代码结构如下:

dataset             # 数据集
------traindata     # 训练数据集
inference           # 输入输出接口
------inputs        # 输入数据
------outputs       # 输出数据
config              # 配置文件
------score.yaml    # 训练配置文件
------yolov5l.yaml  # 模型配置文件
models              # 模型代码
runs	            # 日志文件
utils               # 代码文件
weights             # 模型保存路径,last.pt,best.pt
train.py            # 训练代码
detect.py           # 测试代码

score.yaml解释如下:

# train and val datasets (image directory)
train: ./datasets/traindata/images/train/
val: ./datasets/traindata/images/val/
# number of classes
nc: 2
# class names
names: ['苹果','香蕉']
  • train: 为图像数据的train,地址
  • val: 为图像数据的val,地址
  • nc: 为类别个数
  • names: 为类别对应的名称
yolov5l.yaml解释如下:
nc: 2 # number of classes
depth_multiple: 1.0  # model depth multiple
width_multiple: 1.0  # layer channel multiple
anchors:
  - [10,13, 16,30, 33,23]  # P3/8
  - [30,61, 62,45, 59,119]  # P4/16
  - [116,90, 156,198, 373,326]  # P5/32
backbone:
  # [from, number, module, args]
  [[-1, 1, Focus, [64, 3]],  # 1-P1/2
   [-1, 1, Conv, [128, 3, 2]],  # 2-P2/4
   [-1, 3, Bottleneck, [128]],
   [-1, 1, Conv, [256, 3, 2]],  # 4-P3/8
   [-1, 9, BottleneckCSP, [256]],
   [-1, 1, Conv, [512, 3, 2]],  # 6-P4/16
   [-1, 9, BottleneckCSP, [512]],
   [-1, 1, Conv, [1024, 3, 2]], # 8-P5/32
   [-1, 1, SPP, [1024, [5, 9, 13]]],
   [-1, 6, BottleneckCSP, [1024]],  # 10
  ]
head:
  [[-1, 3, BottleneckCSP, [1024, False]],  # 11
   [-1, 1, nn.Conv2d, [na * (nc + 5), 1, 1, 0]],  # 12 (P5/32-large)
   [-2, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 6], 1, Concat, [1]],  # cat backbone P4
   [-1, 1, Conv, [512, 1, 1]],
   [-1, 3, BottleneckCSP, [512, False]],
   [-1, 1, nn.Conv2d, [na * (nc + 5), 1, 1, 0]],  # 17 (P4/16-medium)
   [-2, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 4], 1, Concat, [1]],  # cat backbone P3
   [-1, 1, Conv, [256, 1, 1]],
   [-1, 3, BottleneckCSP, [256, False]],
   [-1, 1, nn.Conv2d, [na * (nc + 5), 1, 1, 0]],  # 22 (P3/8-small)
   [[], 1, Detect, [nc, anchors]],  # Detect(P3, P4, P5)
  ]
  • nc:为目标类别个数
  • depth_multiple 和 width_multiple:控制模型深度和宽度。不同的参数对应:s,m,l,x 模型。
  • anchors: 为对输入的目标框通过k-means聚类产生的基础框,通过这个基础框去预测目标的box。
  • yolov5会自动产生anchors,yolov5采用欧氏距离进行k-means聚类,再使用遗传算法做一系列的变异得到最终的anchors。但是本人采用欧氏距离进行k-means聚类得到的效果不如采用 1 - iou进行k-means聚类的效果。如果想要 1 - iou 进行k-means聚类源码请私聊我。但是效果其实相差无几。
  • backbone: 为图像特征提取部分的网络结构。
  • head: 为最后的预测部分的网络结构

#####train.py配置十分简单: 在这里插入图片描述

我们仅需修改如下参数即可

epoch:         控制训练迭代的次数
batch_size     输入迭代的图片数量
cfg:           配置网络模型路径
data:          训练配置文件路径
weights:       载入模型,进行断点继续训练

终端运行(默认yolov5l)

 python train.py

即可开始训练。

训练过程

训练结果

4. 测试模型

需要需改三个参数
source:        需要检测的images/videos路径
out:		保存结果的路径
weights:       训练得到的模型权重文件的路径
你也可以使用在coco数据集上的权重文件进行测试将他们放到weights文件夹下

提取码:hhbb

终端运行

 python detect.py

即可开始检测。

测试结果

5.通过flask部署

flask的部署是非简单。如果有不明白的可以参考我之前的博客。

阿里云ECS部署python,flask项目,简单易懂,无需nginx和uwsgi

基于yolov3-deepsort-flask的目标检测和多目标追踪web平台

终端运行

 python app.py

即可开始跳转到网页,上传图片进行检测。

Owner
HB.com
HB.com
Randstad Artificial Intelligence Challenge (powered by VGEN). Soluzione proposta da Stefano Fiorucci (anakin87) - primo classificato

Randstad Artificial Intelligence Challenge (powered by VGEN) Soluzione proposta da Stefano Fiorucci (anakin87) - primo classificato Struttura director

Stefano Fiorucci 1 Nov 13, 2021
JASS: Japanese-specific Sequence to Sequence Pre-training for Neural Machine Translation

JASS: Japanese-specific Sequence to Sequence Pre-training for Neural Machine Translation This the repository for this paper. Find extensions of this w

Zhuoyuan Mao 14 Oct 26, 2022
SPLADE: Sparse Lexical and Expansion Model for First Stage Ranking

SPLADE 🍴 + 🥄 = 🔎 This repository contains the weights for four models as well as the code for running inference for our two papers: [v1]: SPLADE: S

NAVER 170 Dec 28, 2022
Chatbot in 200 lines of code using TensorLayer

Seq2Seq Chatbot This is a 200 lines implementation of Twitter/Cornell-Movie Chatbot, please read the following references before you read the code: Pr

TensorLayer Community 820 Dec 17, 2022
This repository contains an implementation of the Permutohedral Attention Module in Pytorch

Permutohedral_attention_module This repository contains an implementation of the Permutohedral Attention Module

Samuel JOUTARD 26 Nov 27, 2022
This is an implementation of Googles Yogi-Optimizer in Keras (tf.keras)

Yogi-Optimizer_Keras This is an implementation of Googles Yogi-Optimizer in Keras (tf.keras) The NeurIPS-Paper can be found here: http://papers.nips.c

14 Sep 13, 2022
A Fast Monotone Rotating Shallow Water model

pyRSW A Fast Monotone Rotating Shallow Water model How fast? As fast as a sustained 2 Gflop/s per core on a 2.5 GHz cpu (or 2048 Gflop/s with 1024 cor

Guillaume Roullet 13 Sep 28, 2022
WebUAV-3M: A Benchmark Unveiling the Power of Million-Scale Deep UAV Tracking

WebUAV-3M: A Benchmark Unveiling the Power of Million-Scale Deep UAV Tracking [Paper Link] Abstract In this work, we contribute a new million-scale Un

25 Jan 01, 2023
DTCN SMP Challenge - Sequential prediction learning framework and algorithm

DTCN This is the implementation of our paper "Sequential Prediction of Social Me

Bobby 2 Jan 24, 2022
[ICCV 2021 Oral] SnowflakeNet: Point Cloud Completion by Snowflake Point Deconvolution with Skip-Transformer

This repository contains the source code for the paper SnowflakeNet: Point Cloud Completion by Snowflake Point Deconvolution with Skip-Transformer (ICCV 2021 Oral). The project page is here.

AllenXiang 65 Dec 26, 2022
OpenMMLab Image and Video Editing Toolbox

Introduction MMEditing is an open source image and video editing toolbox based on PyTorch. It is a part of the OpenMMLab project. The master branch wo

OpenMMLab 3.9k Jan 04, 2023
Evaluating different engineering tricks that make RL work

Reinforcement Learning Tricks, Index This repository contains the code for the paper "Distilling Reinforcement Learning Tricks for Video Games". Short

Anssi 15 Dec 26, 2022
PyTorch code for DriveGAN: Towards a Controllable High-Quality Neural Simulation

PyTorch code for DriveGAN: Towards a Controllable High-Quality Neural Simulation

76 Dec 24, 2022
RL algorithm PPO and IRL algorithm AIRL written with Tensorflow.

RL algorithm PPO and IRL algorithm AIRL written with Tensorflow. They have a parallel sampling feature in order to increase computation speed (especially in high-performance computing (HPC)).

Fangjian Li 3 Dec 28, 2021
[ICLR 2021] "CPT: Efficient Deep Neural Network Training via Cyclic Precision" by Yonggan Fu, Han Guo, Meng Li, Xin Yang, Yining Ding, Vikas Chandra, Yingyan Lin

CPT: Efficient Deep Neural Network Training via Cyclic Precision Yonggan Fu, Han Guo, Meng Li, Xin Yang, Yining Ding, Vikas Chandra, Yingyan Lin Accep

26 Oct 25, 2022
PyTorch implementation of CloudWalk's recent work DenseBody

densebody_pytorch PyTorch implementation of CloudWalk's recent paper DenseBody. Note: For most recent updates, please check out the dev branch. Update

Lingbo Yang 401 Nov 19, 2022
Prototypical Cross-Attention Networks for Multiple Object Tracking and Segmentation, NeurIPS 2021 Spotlight

PCAN for Multiple Object Tracking and Segmentation This is the offical implementation of paper PCAN for MOTS. We also present a trailer that consists

ETH VIS Group 328 Dec 29, 2022
Just playing with getting VQGAN+CLIP running locally, rather than having to use colab.

Just playing with getting VQGAN+CLIP running locally, rather than having to use colab.

Nerdy Rodent 2.3k Jan 04, 2023
Reading list for research topics in Masked Image Modeling

awesome-MIM Reading list for research topics in Masked Image Modeling(MIM). We list the most popular methods for MIM, if I missed something, please su

ligang 231 Dec 07, 2022
🐦 Quickly annotate data from the comfort of your Jupyter notebook

🐦 pigeon - Quickly annotate data on Jupyter Pigeon is a simple widget that lets you quickly annotate a dataset of unlabeled examples from the comfort

Anastasis Germanidis 647 Jan 05, 2023