EfficientNetV2-with-TPU - Cifar-10 case study

Overview

EfficientNetV2-with-TPU

EfficientNet

EfficientNetV2 adalah jenis jaringan saraf convolutional yang memiliki kecepatan pelatihan lebih cepat dan efisiensi parameter yang lebih baik dari model sebelumnya . Untuk mengembangkan model ini, penulis menggunakan kombinasi pencarian dan penskalaan arsitektur saraf yang sadar pelatihan , untuk bersama-sama mengoptimalkan kecepatan pelatihan. Model dicari dari ruang pencarian yang diperkaya dengan operasi baru seperti Fused-MBConv .

Secara arsitektur perbedaan utama adalah:

  • EfficientNetV2 secara ekstensif menggunakan MBConv dan fusi-MBConv yang baru ditambahkan di lapisan awal.
  • EfficientNetV2 lebih memilih rasio ekspansi yang lebih kecil untuk MBConv karena rasio ekspansi yang lebih kecil cenderung memiliki lebih sedikit overhead akses memori.
  • EfficientNetV2 lebih menyukai ukuran kernel 3x3 yang lebih kecil, tetapi menambahkan lebih banyak lapisan untuk mengkompensasi bidang reseptif yang berkurang yang dihasilkan dari ukuran kernel yang lebih kecil.
  • EfficientNetV2 sepenuhnya menghapus tahap stride-1 terakhir di EfficientNet asli, mungkin karena ukuran parameternya yang besar dan overhead akses memori

Note

Model Size acc-val top-5 acc-test weight
EfficientNetV2B0 224 90.68 99.76 89.86 imagenet
EfficientNetV2B1 240 90.76 99.78 90.07 imagenet
EfficientNetV2B2 260 87.08 99.48 86.85 imagenet
EfficientNetV2B3 300 90.38 99.80 89.29 imagenet
EfficientNetV2T 320 92.80 99.86 92.53 imagenet
EfficientNetV2S 384 89.94 99.74 89.27 imagenet
EfficientNetV2M 480 91.86 99.70 90.53 imagenet
EfficientNetV2L 480 93.10 99.80 92.38 imagenet
EfficientNetV2XL 512 93.24 99.72 93.41 imagenet21K-ft1k
  • Train 90%(45000rb)

  • Validation 10%(5000rb)

  • Test(10000rb)

  • Epochs = 25

  • WeightDecay = 1e-5

  • Batchsize = 16 * 8(strategy.num_replicas_in_sync)

  • optimizers adabelief dengan LearningRateSchduler(Triangular2CyclicalLearningRate) dan Rectified = True(mencegah overshoot)

  • cifar-10 tidak di sarankan untuk di ubah ukuran nya, saya mengubah ukuran nya hanya untuk milihat apakah bagus/tidak efficientnetv2 saat mempelajari cifar-10

Referensi

Owner
Sultan syach
Sultan syach
Post-training Quantization for Neural Networks with Provable Guarantees

Post-training Quantization for Neural Networks with Provable Guarantees Authors: Jinjie Zhang ( Yixuan Zhou 2 Nov 29, 2022

Code for our CVPR 2021 paper "MetaCam+DSCE"

Joint Noise-Tolerant Learning and Meta Camera Shift Adaptation for Unsupervised Person Re-Identification (CVPR'21) Introduction Code for our CVPR 2021

FlyingRoastDuck 59 Oct 31, 2022
Neural models of common sense. 🤖

Unicorn on Rainbow Neural models of common sense. This repository is for the paper: Unicorn on Rainbow: A Universal Commonsense Reasoning Model on a N

AI2 60 Jan 05, 2023
The hippynn python package - a modular library for atomistic machine learning with pytorch.

The hippynn python package - a modular library for atomistic machine learning with pytorch. We aim to provide a powerful library for the training of a

Los Alamos National Laboratory 37 Dec 29, 2022
This tool uses Deep Learning to help you draw and write with your hand and webcam.

This tool uses Deep Learning to help you draw and write with your hand and webcam. A Deep Learning model is used to try to predict whether you want to have 'pencil up' or 'pencil down'.

lmagne 169 Dec 10, 2022
TilinGNN: Learning to Tile with Self-Supervised Graph Neural Network (SIGGRAPH 2020)

TilinGNN: Learning to Tile with Self-Supervised Graph Neural Network (SIGGRAPH 2020) About The goal of our research problem is illustrated below: give

59 Dec 09, 2022
STARCH compuets regional extreme storm physical characteristics and moisture balance based on spatiotemporal precipitation data from reanalysis or climate model data.

STARCH (Storm Tracking And Regional CHaracterization) STARCH computes regional extreme storm physical and moisture balance characteristics based on sp

Onosama 7 Oct 20, 2022
List of awesome things around semantic segmentation 🎉

Awesome Semantic Segmentation List of awesome things around semantic segmentation 🎉 Semantic segmentation is a computer vision task in which we label

Dam Minh Tien 18 Nov 26, 2022
Breast Cancer Detection 🔬 ITI "AI_Pro" Graduation Project

BreastCancerDetection - This program is designed to predict two severity of abnormalities associated with breast cancer cells: benign and malignant. Mammograms from MIAS is preprocessed and features

6 Nov 29, 2022
Nonuniform-to-Uniform Quantization: Towards Accurate Quantization via Generalized Straight-Through Estimation. In CVPR 2022.

Nonuniform-to-Uniform Quantization This repository contains the training code of N2UQ introduced in our CVPR 2022 paper: "Nonuniform-to-Uniform Quanti

Zechun Liu 60 Dec 28, 2022
Customizable RecSys Simulator for OpenAI Gym

gym-recsys: Customizable RecSys Simulator for OpenAI Gym Installation | How to use | Examples | Citation This package describes an OpenAI Gym interfac

Xingdong Zuo 14 Dec 08, 2022
PyTorch implementation of Advantage Actor Critic (A2C), Proximal Policy Optimization (PPO), Scalable trust-region method for deep reinforcement learning using Kronecker-factored approximation (ACKTR) and Generative Adversarial Imitation Learning (GAIL).

PyTorch implementation of Advantage Actor Critic (A2C), Proximal Policy Optimization (PPO), Scalable trust-region method for deep reinforcement learning using Kronecker-factored approximation (ACKTR)

Ilya Kostrikov 3k Dec 31, 2022
PyTorch Implementation for AAAI'21 "Do Response Selection Models Really Know What's Next? Utterance Manipulation Strategies for Multi-turn Response Selection"

UMS for Multi-turn Response Selection Implements the model described in the following paper Do Response Selection Models Really Know What's Next? Utte

Taesun Whang 47 Nov 22, 2022
Code and hyperparameters for the paper "Generative Adversarial Networks"

Generative Adversarial Networks This repository contains the code and hyperparameters for the paper: "Generative Adversarial Networks." Ian J. Goodfel

Ian Goodfellow 3.5k Jan 08, 2023
FindFunc is an IDA PRO plugin to find code functions that contain a certain assembly or byte pattern, reference a certain name or string, or conform to various other constraints.

FindFunc: Advanced Filtering/Finding of Functions in IDA Pro FindFunc is an IDA Pro plugin to find code functions that contain a certain assembly or b

213 Dec 17, 2022
Code for "Causal autoregressive flows" - AISTATS, 2021

Code for "Causal Autoregressive Flow" This repository contains code to run and reproduce experiments presented in Causal Autoregressive Flows, present

Ricardo Pio Monti 35 Dec 16, 2022
PyTorch experiments with the Zalando fashion-mnist dataset

zalando-pytorch PyTorch experiments with the Zalando fashion-mnist dataset Project Organization ├── LICENSE ├── Makefile - Makefile with co

Federico Baldassarre 31 Sep 25, 2021
Pynomial - a lightweight python library for implementing the many confidence intervals for the risk parameter of a binomial model

Pynomial - a lightweight python library for implementing the many confidence intervals for the risk parameter of a binomial model

Demetri Pananos 9 Oct 04, 2022
Official Code for VideoLT: Large-scale Long-tailed Video Recognition (ICCV 2021)

Pytorch Code for VideoLT [Website][Paper] Updates [10/29/2021] Features uploaded to Google Drive, for access please send us an e-mail: zhangxing18 at

Skye 26 Sep 18, 2022
Standalone pre-training recipe with JAX+Flax

Sabertooth Sabertooth is standalone pre-training recipe based on JAX+Flax, with data pipelines implemented in Rust. It runs on CPU, GPU, and/or TPU, b

Nikita Kitaev 26 Nov 28, 2022