Code to accompany the paper "Finding Bipartite Components in Hypergraphs", which is published in NeurIPS'21.

Overview

Finding Bipartite Components in Hypergraphs

This repository contains code to accompany the paper "Finding Bipartite Components in Hypergraphs", published in NeurIPS 2021. It provides an implementation of the proposed algorithm based on the new hypergraph diffusion process, as well as the baseline algorithm based on the clique reduction.

Below, you can find instructions for running the code which will reproduce the results reported in the paper.

Feel free to contact me with any questions or comments at [email protected].

Set-up

The code was written to work with Python 3.6, although other versions of Python 3 should also work. We recommend that you run inside a virtual environment.

To install the dependencies of this project, run

pip install -r requirements.txt

Viewing the visualisation

In order to demonstrate our algorithm, you can view the visualisation of the 2-graph constructed at each step by running

python show_visualisation.py

This example was used to create Figure 1 in the paper.

Experiments

In this section, we give instructions for running the experiments reported in the paper.

Penn Treebank Preprocessing

We are unfortunately not able to share the data used for the Penn Treebank experiment, and so we give instructions here for how to preprocess this data for use with our code. You will need to have your own access to the Penn Treebank corpus.

Follow the instructions in this repository, passing the --task pos command line option to generate the files train.tsv, test.tsv, and dev.tsv. Copy these three files to the data/nlp/penn-treebank directory.

Running the real-world experiments

To run the experiments on real-world data, you should run

python run_experiment.py {experiment_name}

where {experiment_name} is one of 'ptb', 'dblp', 'imdb', or 'wikipedia' to run the Penn Treebank, DBLP, IMDB and Wikipedia experiments respectively.

Running the synthetic experiments

To run an experiment on a single synthetic hypergraph, run

python run_experiment_synthetic.py {n} {r} {p} {q}

where {n} is the number of vertices in the hypergraph, {r} is the rank of the hypergraph, {p} is the probability of an edge inside a cluster, and {q} is the probability of an edge between clusters. Be careful not to set p or q to be too large. See the main paper for more information about the random hypergraph model. This will construct the hypergraph if needed, and report the performance of the diffusion algorithm and the clique algorithm on the constructed hypergraph.

Results

The full results from our experiments on synthetic hypergraphs are provided in the data/sbm/results directory, along with a Mathematica notebook for viewing them, and plotting the figures shown in the paper.

Owner
Peter Macgregor
Computer Science PhD Student, University of Edinburgh.
Peter Macgregor
We propose a new method for effective shadow removal by regarding it as an exposure fusion problem.

Auto-exposure fusion for single-image shadow removal We propose a new method for effective shadow removal by regarding it as an exposure fusion proble

Qing Guo 146 Dec 31, 2022
🥈78th place in Riiid Solution🥈

Riiid Answer Correctness Prediction Introduction This repository is the code that placed 78th in Riiid Answer Correctness Prediction competition. Requ

ds wook 14 Apr 26, 2022
Extreme Lightwegith Portrait Segmentation

Extreme Lightwegith Portrait Segmentation Please go to this link to download code Requirements python 3 pytorch = 0.4.1 torchvision==0.2.1 opencv-pyt

HYOJINPARK 59 Dec 16, 2022
Repositório para arquivos sobre o Módulo 1 do curso Top Coders da Let's Code + Safra

850-Safra-DS-ModuloI Repositório para arquivos sobre o Módulo 1 do curso Top Coders da Let's Code + Safra Para aprender mais Git https://learngitbranc

Brian Nunes 7 Dec 10, 2022
[CVPR 2021] Generative Hierarchical Features from Synthesizing Images

[CVPR 2021] Generative Hierarchical Features from Synthesizing Images

GenForce: May Generative Force Be with You 148 Dec 09, 2022
Pytorch library for seismic data augmentation

Pytorch library for seismic data augmentation

Artemii Novoselov 27 Nov 22, 2022
Code for "Multi-View Multi-Person 3D Pose Estimation with Plane Sweep Stereo"

Multi-View Multi-Person 3D Pose Estimation with Plane Sweep Stereo This repository includes the source code for our CVPR 2021 paper on multi-view mult

Jiahao Lin 66 Jan 04, 2023
SOTA easy to use PyTorch-based DL training library

Easily train or fine-tune SOTA computer vision models from one training repository. SuperGradients Introduction Welcome to SuperGradients, a free open

619 Jan 03, 2023
MetaAvatar: Learning Animatable Clothed Human Models from Few Depth Images

MetaAvatar: Learning Animatable Clothed Human Models from Few Depth Images This repository contains the implementation of our paper MetaAvatar: Learni

sfwang 96 Dec 13, 2022
GPOEO is a micro-intrusive GPU online energy optimization framework for iterative applications

GPOEO GPOEO is a micro-intrusive GPU online energy optimization framework for iterative applications. We also implement ODPP [1] as a comparison. [1]

瑞雪轻飏 8 Sep 10, 2022
Code for testing convergence rates of Lipschitz learning on graphs

📈 LipschitzLearningRates The code in this repository reproduces the experimental results on convergence rates for k-nearest neighbor graph infinity L

2 Dec 20, 2021
With this package, you can generate mixed-integer linear programming (MIP) models of trained artificial neural networks (ANNs) using the rectified linear unit (ReLU) activation function

With this package, you can generate mixed-integer linear programming (MIP) models of trained artificial neural networks (ANNs) using the rectified linear unit (ReLU) activation function. At the momen

ChemEngAI 40 Dec 27, 2022
Using PyTorch Perform intent classification using three different models to see which one is better for this task

Using PyTorch Perform intent classification using three different models to see which one is better for this task

Yoel Graumann 1 Feb 14, 2022
[AAAI-2021] Visual Boundary Knowledge Translation for Foreground Segmentation

Trans-Net Code for (Visual Boundary Knowledge Translation for Foreground Segmentation, AAAI2021). [https://ojs.aaai.org/index.php/AAAI/article/view/16

ZJU-VIPA 2 Mar 04, 2022
Easy way to add GoogleMaps to Flask applications. maintainer: @getcake

Flask Google Maps Easy to use Google Maps in your Flask application requires Jinja Flask A google api key get here Contribute To contribute with the p

Flask Extensions 611 Dec 05, 2022
Revisiting Temporal Alignment for Video Restoration

Revisiting Temporal Alignment for Video Restoration [arXiv] Kun Zhou, Wenbo Li, Liying Lu, Xiaoguang Han, Jiangbo Lu We provide our results at Google

52 Dec 25, 2022
PyTorch code of my WACV 2022 paper Improving Model Generalization by Agreement of Learned Representations from Data Augmentation

Improving Model Generalization by Agreement of Learned Representations from Data Augmentation (WACV 2022) Paper ArXiv Why it matters? When data augmen

Rowel Atienza 5 Mar 04, 2022
A platform to display the carbon neutralization information for researchers, decision-makers, and other participants in the community.

Welcome to Carbon Insight Carbon Insight is a platform aiming to display the carbon neutralization roadmap for researchers, decision-makers, and other

Microsoft 14 Oct 24, 2022
Sound-guided Semantic Image Manipulation - Official Pytorch Code (CVPR 2022)

🔉 Sound-guided Semantic Image Manipulation (CVPR2022) Official Pytorch Implementation Sound-guided Semantic Image Manipulation IEEE/CVF Conference on

CVLAB 58 Dec 28, 2022
YouRefIt: Embodied Reference Understanding with Language and Gesture

YouRefIt: Embodied Reference Understanding with Language and Gesture YouRefIt: Embodied Reference Understanding with Language and Gesture by Yixin Che

16 Jul 11, 2022