Multimodal Co-Attention Transformer (MCAT) for Survival Prediction in Gigapixel Whole Slide Images

Related tags

Deep LearningMCAT
Overview

Multimodal Co-Attention Transformer (MCAT) for Survival Prediction in Gigapixel Whole Slide Images

[ICCV 2021]

© Mahmood Lab - This code is made available under the GPLv3 License and is available for non-commercial academic purposes.

If you find our work useful in your research or if you use parts of this code please consider citing our paper:

@inproceedings{chen2021multimodal,
  title={Multimodal Co-Attention Transformer for Survival Prediction in Gigapixel Whole Slide Images},
  author={Chen, Richard J and Lu, Ming Y and Weng, Wei-Hung and Chen, Tiffany Y and Williamson, Drew FK and Manz, Trevor and Shady, Maha and Mahmood, Faisal},
  booktitle={Proceedings of the IEEE/CVF International Conference on Computer Vision},
  pages={4015--4025},
  year={2021}
}

Updates:

  • 11/12/2021: Several users have raised concerns about the low c-Index for GBMLGG in SNN (Genomic Only). In using the gene families from MSigDB as gene signatures, IDH1 mutation was not included (key biomarker in distinguishing GBM and LGG).
  • 06/18/2021: Updated data preprocessing section for reproducibility.
  • 06/17/2021: Uploaded predicted risk scores on the validation folds for each models, and the evaluation script to compute the c-Index and Integrated AUC (I-AUC) validation metrics, found using the following Jupyter Notebook. Model checkpoints for MCAT are uploaded in the results directory.
  • 06/17/2021: Uploaded notebook detailing the MCAT network architecture, with sample input in the following following Jupyter Notebook, in which we print the shape of the tensors at each stage of MCAT.

Pre-requisites:

  • Linux (Tested on Ubuntu 18.04)
  • NVIDIA GPU (Tested on Nvidia GeForce RTX 2080 Ti x 16) with CUDA 11.0 and cuDNN 7.5
  • Python (3.7.7), h5py (2.10.0), matplotlib (3.1.1), numpy (1.18.1), opencv-python (4.1.1), openslide-python (1.1.1), openslide (3.4.1), pandas (1.1.3), pillow (7.0.0), PyTorch (1.6.0), scikit-learn (0.22.1), scipy (1.4.1), tensorflow (1.13.1), tensorboardx (1.9), torchvision (0.7.0), captum (0.2.0), shap (0.35.0)

Installation Guide for Linux (using anaconda)

1. Downloading TCGA Data

To download diagnostic WSIs (formatted as .svs files), molecular feature data and other clinical metadata, please refer to the NIH Genomic Data Commons Data Portal and the cBioPortal. WSIs for each cancer type can be downloaded using the GDC Data Transfer Tool.

2. Processing Whole Slide Images

To process WSIs, first, the tissue regions in each biopsy slide are segmented using Otsu's Segmentation on a downsampled WSI using OpenSlide. The 256 x 256 patches without spatial overlapping are extracted from the segmented tissue regions at the desired magnification. Consequently, a pretrained truncated ResNet50 is used to encode raw image patches into 1024-dim feature vectors, which we then save as .pt files for each WSI. The extracted features then serve as input (in a .pt file) to the network. The following folder structure is assumed for the extracted features vectors:

DATA_ROOT_DIR/
    └──TCGA_BLCA/
        ├── slide_1.pt
        ├── slide_2.pt
        └── ...
    └──TCGA_BRCA/
        ├── slide_1.pt
        ├── slide_2.pt
        └── ...
    └──TCGA_GBMLGG/
        ├── slide_1.pt
        ├── slide_2.pt
        └── ...
    └──TCGA_LUAD/
        ├── slide_1.ptd
        ├── slide_2.pt
        └── ...
    └──TCGA_UCEC/
        ├── slide_1.pt
        ├── slide_2.pt
        └── ...
    ...

DATA_ROOT_DIR is the base directory of all datasets / cancer type(e.g. the directory to your SSD). Within DATA_ROOT_DIR, each folder contains a list of .pt files for that dataset / cancer type.

3. Molecular Features and Genomic Signatures

Processed molecular profile features containing mutation status, copy number variation, and RNA-Seq abundance can be downloaded from the cBioPortal, which we include as CSV files in the following directory. For ordering gene features into gene embeddings, we used the following categorization of gene families (categorized via common features such as homology or biochemical activity) from MSigDB. Gene sets for homeodomain proteins and translocated cancer genes were not used due to overlap with transcription factors and oncogenes respectively. The curation of "genomic signatures" can be modified to curate genomic embedding that reflect unique biological functions.

4. Training-Validation Splits

For evaluating the algorithm's performance, we randomly partitioned each dataset using 5-fold cross-validation. Splits for each cancer type are found in the splits/5foldcv folder, which each contain splits_{k}.csv for k = 1 to 5. In each splits_{k}.csv, the first column corresponds to the TCGA Case IDs used for training, and the second column corresponds to the TCGA Case IDs used for validation. Alternatively, one could define their own splits, however, the files would need to be defined in this format. The dataset loader for using these train-val splits are defined in the get_split_from_df function in the Generic_WSI_Survival_Dataset class (inherited from the PyTorch Dataset class).

5. Running Experiments

To run experiments using the SNN, AMIL, and MMF networks defined in this repository, experiments can be run using the following generic command-line:

CUDA_VISIBLE_DEVICES=<DEVICE ID> python main.py --which_splits <SPLIT FOLDER PATH> --split_dir <SPLITS FOR CANCER TYPE> --mode <WHICH MODALITY> --model_type <WHICH MODEL>

Commands for all experiments / models can be found in the Commands.md file.

Owner
Mahmood Lab @ Harvard/BWH
AI for Pathology Image Analysis Lab @ HMS / BWH
Mahmood Lab @ Harvard/BWH
AlphaBot2 Pi Core software for interfacing with the various components.

AlphaBot2-Pi-Core AlphaBot2 Pi Core software for interfacing with the various components. This project is currently a W.I.P. I will update this readme

KyleDev 1 Feb 13, 2022
Recursive Bayesian Networks

Recursive Bayesian Networks This repository contains the code to reproduce the results from the NeurIPS 2021 paper Lieck R, Rohrmeier M (2021) Recursi

Robert Lieck 11 Oct 18, 2022
Companion code for the paper "An Infinite-Feature Extension for Bayesian ReLU Nets That Fixes Their Asymptotic Overconfidence" (NeurIPS 2021)

ReLU-GP Residual (RGPR) This repository contains code for reproducing the following NeurIPS 2021 paper: @inproceedings{kristiadi2021infinite, title=

Agustinus Kristiadi 4 Dec 26, 2021
Hooks for VCOCO

Verbs in COCO (V-COCO) Dataset This repository hosts the Verbs in COCO (V-COCO) dataset and associated code to evaluate models for the Visual Semantic

Saurabh Gupta 131 Nov 24, 2022
A Pytree Module system for Deep Learning in JAX

Treex A Pytree-based Module system for Deep Learning in JAX Intuitive: Modules are simple Python objects that respect Object-Oriented semantics and sh

Cristian Garcia 216 Dec 20, 2022
Replication Package for "An Empirical Study of the Effectiveness of an Ensemble of Stand-alone Sentiment Detection Tools for Software Engineering Datasets"

Replication Package for "An Empirical Study of the Effectiveness of an Ensemble of Stand-alone Sentiment Detection Tools for Software Engineering Data

2 Oct 06, 2022
Layered Neural Atlases for Consistent Video Editing

Layered Neural Atlases for Consistent Video Editing Project Page | Paper This repository contains an implementation for the SIGGRAPH Asia 2021 paper L

Yoni Kasten 353 Dec 27, 2022
Official code for On Path Integration of Grid Cells: Group Representation and Isotropic Scaling (NeurIPS 2021)

On Path Integration of Grid Cells: Group Representation and Isotropic Scaling This repo contains the official implementation for the paper On Path Int

Ruiqi Gao 39 Nov 10, 2022
Source codes for "Structure-Aware Abstractive Conversation Summarization via Discourse and Action Graphs"

Structure-Aware-BART This repo contains codes for the following paper: Jiaao Chen, Diyi Yang:Structure-Aware Abstractive Conversation Summarization vi

GT-SALT 56 Dec 08, 2022
Implementation of FitVid video prediction model in JAX/Flax.

FitVid Video Prediction Model Implementation of FitVid video prediction model in JAX/Flax. If you find this code useful, please cite it in your paper:

Google Research 62 Nov 25, 2022
The code of Zero-shot learning for low-light image enhancement based on dual iteration

Zero-shot-dual-iter-LLE The code of Zero-shot learning for low-light image enhancement based on dual iteration. You can get the real night image tests

1 Mar 18, 2022
Official repository of OFA. Paper: Unifying Architectures, Tasks, and Modalities Through a Simple Sequence-to-Sequence Learning Framework

Paper | Blog OFA is a unified multimodal pretrained model that unifies modalities (i.e., cross-modality, vision, language) and tasks (e.g., image gene

OFA Sys 1.4k Jan 08, 2023
Quantized models with python

quantized-network download .pth files to qmodels/: googlenet : https://download.

adreamxcj 2 Dec 28, 2021
Hunt down social media accounts by username across social networks

Hunt down social media accounts by username across social networks Installation | Usage | Docker Notes | Contributing Installation # clone the repo $

1 Dec 14, 2021
Automatic Data-Regularized Actor-Critic (Auto-DrAC)

Auto-DrAC: Automatic Data-Regularized Actor-Critic This is a PyTorch implementation of the methods proposed in Automatic Data Augmentation for General

89 Dec 13, 2022
[PyTorch] Official implementation of CVPR2021 paper "PointDSC: Robust Point Cloud Registration using Deep Spatial Consistency". https://arxiv.org/abs/2103.05465

PointDSC repository PyTorch implementation of PointDSC for CVPR'2021 paper "PointDSC: Robust Point Cloud Registration using Deep Spatial Consistency",

153 Dec 14, 2022
CTF Challenge for CSAW Finals 2021

Terminal Velocity Misc CTF Challenge for CSAW Finals 2021 This is a challenge I've had in mind for almost 15 years and never got around to building un

Jordan 6 Jul 30, 2022
Audio-Visual Generalized Few-Shot Learning with Prototype-Based Co-Adaptation

Audio-Visual Generalized Few-Shot Learning with Prototype-Based Co-Adaptation The code repository for "Audio-Visual Generalized Few-Shot Learning with

Kaiaicy 3 Jun 27, 2022
LAMDA: Label Matching Deep Domain Adaptation

LAMDA: Label Matching Deep Domain Adaptation This is the implementation of the paper LAMDA: Label Matching Deep Domain Adaptation which has been accep

Tuan Nguyen 9 Sep 06, 2022
Hyperbolic Procrustes Analysis Using Riemannian Geometry

Hyperbolic Procrustes Analysis Using Riemannian Geometry The code in this repository creates the figures presented in this article: Please notice that

Ronen Talmon's Lab 2 Jan 08, 2023