Code for "AutoMTL: A Programming Framework for Automated Multi-Task Learning"

Related tags

Deep LearningAutoMTL
Overview

AutoMTL: A Programming Framework for Automated Multi-Task Learning

This is the website for our paper "AutoMTL: A Programming Framework for Automated Multi-Task Learning", submitted to MLSys 2022. The arXiv version will be public at Tue, 26 Oct 2021.

Abstract

Multi-task learning (MTL) jointly learns a set of tasks. It is a promising approach to reduce the training and inference time and storage costs while improving prediction accuracy and generalization performance for many computer vision tasks. However, a major barrier preventing the widespread adoption of MTL is the lack of systematic support for developing compact multi-task models given a set of tasks. In this paper, we aim to remove the barrier by developing the first programming framework AutoMTL that automates MTL model development. AutoMTL takes as inputs an arbitrary backbone convolutional neural network and a set of tasks to learn, then automatically produce a multi-task model that achieves high accuracy and has small memory footprint simultaneously. As a programming framework, AutoMTL could facilitate the development of MTL-enabled computer vision applications and even further improve task performance.

overview

Cite

Welcome to cite our work if you find it is helpful to your research. [TODO: cite info]

Description

Environment

conda install pytorch==1.6.0 torchvision==0.7.0 -c pytorch # Or higher
conda install protobuf
pip install opencv-python
pip install scikit-learn

Datasets

We conducted experiments on three popular datasets in multi-task learning (MTL), CityScapes [1], NYUv2 [2], and Tiny-Taskonomy [3]. You can download the them here. For Tiny-Taskonomy, you will need to contact the authors directly. See their official website.

File Structure

├── data
│   ├── dataloader
│   │   ├── *_dataloader.py
│   ├── heads
│   │   ├── pixel2pixel.py
│   ├── metrics
│   │   ├── pixel2pixel_loss/metrics.py
├── framework
│   ├── layer_containers.py
│   ├── base_node.py
│   ├── layer_node.py
│   ├── mtl_model.py
│   ├── trainer.py
├── models
│   ├── *.prototxt
├── utils
└── └── pytorch_to_caffe.py

Code Description

Our code can be divided into three parts: code for data, code of AutoMTL, and others

  • For Data

    • Dataloaders *_dataloader.py: For each dataset, we offer a corresponding PyTorch dataloader with a specific task variable.
    • Heads pixel2pixel.py: The ASPP head [4] is implemented for the pixel-to-pixel vision tasks.
    • Metrics pixel2pixel_loss/metrics.py: For each task, it has its own criterion and metric.
  • AutoMTL

    • Multi-Task Model Generator mtl_model.py: Transfer the given backbone model in the format of prototxt, and the task-specific model head dictionary to a multi-task supermodel.
    • Trainer Tools trainer.py: Meterialize a three-stage training pipeline to search out a good multi-task model for the given tasks. pipeline
  • Others

    • Input Backbone *.prototxt: Typical vision backbone models including Deeplab-ResNet34 [4], MobileNetV2, and MNasNet.
    • Transfer to Prototxt pytorch_to_caffe.py: If you define your own customized backbone model in PyTorch API, we also provide a tool to convert it to a prototxt file.

How to Use

Set up Data

Each task will have its own dataloader for both training and validation, task-specific criterion (loss), evaluation metric, and model head. Here we take CityScapes as an example.

tasks = ['segment_semantic', 'depth_zbuffer']
task_cls_num = {'segment_semantic': 19, 'depth_zbuffer': 1} # the number of classes in each task

You can also define your own dataloader, criterion, and evaluation metrics. Please refer to files in data/ to make sure your customized classes have the same output format as ours to fit for our framework.

dataloader dictionary

trainDataloaderDict = {}
valDataloaderDict = {}
for task in tasks:
    dataset = CityScapes(dataroot, 'train', task, crop_h=224, crop_w=224)
    trainDataloaderDict[task] = DataLoader(dataset, <batch_size>, shuffle=True)

    dataset = CityScapes(dataroot, 'test', task)
    valDataloaderDict[task] = DataLoader(dataset, <batch_size>, shuffle=True)

criterion dictionary

criterionDict = {}
for task in tasks:
    criterionDict[task] = CityScapesCriterions(task)

evaluation metric dictionary

metricDict = {}
for task in tasks:
    metricDict[task] = CityScapesMetrics(task)

task-specific heads dictionary

headsDict = nn.ModuleDict() # must be nn.ModuleDict() instead of python dictionary
for task in tasks:
    headsDict[task] = ASPPHeadNode(<feature_dim>, task_cls_num[task])

Construct Multi-Task Supermodel

prototxt = 'models/deeplab_resnet34_adashare.prototxt' # can be any CNN model
mtlmodel = MTLModel(prototxt, headsDict)

3-stage Training

define the trainer

trainer = Trainer(mtlmodel, trainDataloaderDict, valDataloaderDict, criterionDict, metricDict)

pre-train phase

trainer.pre_train(iters=<total_iter>, lr=<init_lr>, savePath=<save_path>)

policy-train phase

loss_lambda = {'segment_semantic': 1, 'depth_zbuffer': 1, 'policy':0.0005} # the weights for each task and the policy regularization term from the paper
trainer.alter_train_with_reg(iters=<total_iter>, policy_network_iters=<alter_iters>, policy_lr=<policy_lr>, network_lr=<network_lr>, 
                             loss_lambda=loss_lambda, savePath=<save_path>)

Notice that when training the policy and the model weights together, we alternatively train them for specified iters in policy_network_iters.

post-train phase

trainer.post_train(ters=<total_iter>, lr=<init_lr>, 
                   loss_lambda=loss_lambda, savePath=<save_path>, reload=<policy_train_model_name>)

Note: Please refer to Example.ipynb for more details.

References

[1] Cordts, Marius and Omran, Mohamed and Ramos, Sebastian and Rehfeld, Timo and Enzweiler, Markus and Benenson, Rodrigo and Franke, Uwe and Roth, Stefan and Schiele, Bernt. The cityscapes dataset for semantic urban scene understanding. CVPR, 3213-3223, 2016.

[2] Silberman, Nathan and Hoiem, Derek and Kohli, Pushmeet and Fergus, Rob. Indoor segmentation and support inference from rgbd images. ECCV, 746-760, 2012.

[3] Zamir, Amir R and Sax, Alexander and Shen, William and Guibas, Leonidas J and Malik, Jitendra and Savarese, Silvio. Taskonomy: Disentangling task transfer learning. CVPR, 3712-3722, 2018.

[4] Chen, Liang-Chieh and Papandreou, George and Kokkinos, Iasonas and Murphy, Kevin and Yuille, Alan L. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. PAMI, 834-848, 2017.

Owner
Ivy Zhang
Ivy Zhang
Christmas face app for Decathlon xmas coding party!

Christmas Face Application Use this library to create the perfect picture for your christmas cards! Done by Hasib Zunair, Guillaume Brassard and Samue

Hasib Zunair 4 Dec 20, 2021
Dynamic Graph Event Detection

DyGED Dynamic Graph Event Detection Get Started pip install -r requirements.txt TODO Paper link to arxiv, and how to cite. Twitter Weather dataset tra

Mert Koşan 3 May 09, 2022
This repository contains the code needed to train Mega-NeRF models and generate the sparse voxel octrees

Mega-NeRF This repository contains the code needed to train Mega-NeRF models and generate the sparse voxel octrees used by the Mega-NeRF-Dynamic viewe

cmusatyalab 260 Dec 28, 2022
[ICML 2021] Break-It-Fix-It: Learning to Repair Programs from Unlabeled Data

Break-It-Fix-It: Learning to Repair Programs from Unlabeled Data This repo provides the source code & data of our paper: Break-It-Fix-It: Unsupervised

Michihiro Yasunaga 86 Nov 30, 2022
ShapeGlot: Learning Language for Shape Differentiation

ShapeGlot: Learning Language for Shape Differentiation Created by Panos Achlioptas, Judy Fan, Robert X.D. Hawkins, Noah D. Goodman, Leonidas J. Guibas

Panos 32 Dec 23, 2022
Code Release for Learning to Adapt to Evolving Domains

EAML Code release for "Learning to Adapt to Evolving Domains" (NeurIPS 2020) Prerequisites PyTorch = 0.4.0 (with suitable CUDA and CuDNN version) tor

23 Dec 07, 2022
Yolo algorithm for detection + centroid tracker to track vehicles

Vehicle Tracking using Centroid tracker Algorithm used : Yolo algorithm for detection + centroid tracker to track vehicles Backend : opencv and python

6 Dec 21, 2022
Parris, the automated infrastructure setup tool for machine learning algorithms.

README Parris, the automated infrastructure setup tool for machine learning algorithms. What Is This Tool? Parris is a tool for automating the trainin

Joseph Greene 319 Aug 02, 2022
Prediction of MBA refinance Index (Mortgage prepayment)

Prediction of MBA refinance Index (Mortgage prepayment) Deep Neural Network based Model The ability to predict mortgage prepayment is of critical use

Ruchil Barya 1 Jan 16, 2022
Retinal Vessel Segmentation with Pixel-wise Adaptive Filters (ISBI 2022)

Official code of Retinal Vessel Segmentation with Pixel-wise Adaptive Filters and Consistency Training (ISBI 2022)

anonymous 14 Oct 27, 2022
Python implementation of the multistate Bennett acceptance ratio (MBAR)

pymbar Python implementation of the multistate Bennett acceptance ratio (MBAR) method for estimating expectations and free energy differences from equ

Chodera lab // Memorial Sloan Kettering Cancer Center 169 Dec 02, 2022
Source code for PairNorm (ICLR 2020)

PairNorm Official pytorch source code for PairNorm paper (ICLR 2020) This code requires pytorch_geometric=1.3.2 usage For SGC, we use original PairNo

62 Dec 08, 2022
Build an Amazon SageMaker Pipeline to Transform Raw Texts to A Knowledge Graph

Build an Amazon SageMaker Pipeline to Transform Raw Texts to A Knowledge Graph This repository provides a pipeline to create a knowledge graph from ra

AWS Samples 3 Jan 01, 2022
Semi-Supervised Learning, Object Detection, ICCV2021

End-to-End Semi-Supervised Object Detection with Soft Teacher By Mengde Xu*, Zheng Zhang*, Han Hu, Jianfeng Wang, Lijuan Wang, Fangyun Wei, Xiang Bai,

Microsoft 789 Dec 27, 2022
ThunderGBM: Fast GBDTs and Random Forests on GPUs

Documentations | Installation | Parameters | Python (scikit-learn) interface What's new? ThunderGBM won 2019 Best Paper Award from IEEE Transactions o

Xtra Computing Group 647 Jan 04, 2023
Official code for the paper "Self-Supervised Prototypical Transfer Learning for Few-Shot Classification"

Self-Supervised Prototypical Transfer Learning for Few-Shot Classification This repository contains the reference source code and pre-trained models (

EPFL INDY 44 Nov 04, 2022
An official TensorFlow implementation of “CLCC: Contrastive Learning for Color Constancy” accepted at CVPR 2021.

CLCC: Contrastive Learning for Color Constancy (CVPR 2021) Yi-Chen Lo*, Chia-Che Chang*, Hsuan-Chao Chiu, Yu-Hao Huang, Chia-Ping Chen, Yu-Lin Chang,

Yi-Chen (Howard) Lo 58 Dec 17, 2022
ST++: Make Self-training Work Better for Semi-supervised Semantic Segmentation

ST++ This is the official PyTorch implementation of our paper: ST++: Make Self-training Work Better for Semi-supervised Semantic Segmentation. Lihe Ya

Lihe Yang 147 Jan 03, 2023
A TensorFlow implementation of the Mnemonic Descent Method.

MDM A Tensorflow implementation of the Mnemonic Descent Method. Mnemonic Descent Method: A recurrent process applied for end-to-end face alignment G.

123 Oct 07, 2022
Reproduce partial features of DeePMD-kit using PyTorch.

DeePMD-kit on PyTorch For better understand DeePMD-kit, we implement its partial features using PyTorch and expose interface consuing descriptors. Tec

Shaochen Shi 8 Dec 17, 2022