Score refinement for confidence-based 3D multi-object tracking

Related tags

Deep LearningCBMOT
Overview

Score refinement for confidence-based 3D multi-object tracking

Our video gives a brief explanation of our Method.

This is the official code for the paper:

Score refinement for confidence-based 3D multi-object tracking,
Nuri Benbarka, Jona Schröder, Andreas Zell,
arXiv technical report (arXiv 2107.04327)

@article{benbarka2021score,
    title={Score refinement for confidence-based 3D multi-object tracking},
    author={Benbarka, Nuri and Schr{\"o}der, Jona and Zell, Andreas},
    journal={arXiv preprint arXiv:2107.04327},
    year={2021}
}

It also contains the code of the B.Sc. thesis:

Learning score update functions for confidence-based MOT, Anouar Gherri,

@article{gherri2021learning,
    title = {Learning score update functions for confidence-based MOT},
    author = {Gherri, Anouar},
    year = {2021}        
}

Contact

Feel free to contact us for any questions!

Nuri Benbarka [email protected],

Jona Schröder [email protected],

Anouar Gherri [email protected],

Abstract

Multi-object tracking is a critical component in autonomous navigation, as it provides valuable information for decision-making. Many researchers tackled the 3D multi-object tracking task by filtering out the frame-by-frame 3D detections; however, their focus was mainly on finding useful features or proper matching metrics. Our work focuses on a neglected part of the tracking system: score refinement and tracklet termination. We show that manipulating the scores depending on time consistency while terminating the tracklets depending on the tracklet score improves tracking results. We do this by increasing the matched tracklets' score with score update functions and decreasing the unmatched tracklets' score. Compared to count-based methods, our method consistently produces better AMOTA and MOTA scores when utilizing various detectors and filtering algorithms on different datasets. The improvements in AMOTA score went up to 1.83 and 2.96 in MOTA. We also used our method as a late-fusion ensembling method, and it performed better than voting-based ensemble methods by a solid margin. It achieved an AMOTA score of 67.6 on nuScenes test evaluation, which is comparable to other state-of-the-art trackers.

Results

NuScenes

Detector Split Update function modality AMOTA AMOTP MOTA
CenterPoint Val - Lidar 67.3 57.4 57.3
CenterTrack Val - Camera 17.8 158.0 15.0
CenterPoint Val Multiplication Lidar 68.8 58.9 60.2
CenterPoint + CenterTrack Val Multiplication Fusion 72.1 53.3 58.5
CenterPoint + CenterTrack Val Neural network Fusion 72.0 48.7 58.2

The results are different than what is reported in the paper because of optimizing NUSCENE_CLS_VELOCITY_ERRORs, and using the new detection results from CenterPoint.

Installation

# basic python libraries
conda create --name CBMOT python=3.7
conda activate CBMOT
git clone https://github.com/cogsys-tuebingen/CBMOT.git
cd CBMOT
pip install -r requirements.txt

Create a folder to place the dataset called data. Download the NuScenes dataset and then prepare it as was instructed in nuScenes devkit. Make a hyperlink that points to the prepared dataset.

mkdir data
cd data
ln -s  LINK_TO_NUSCENES_DATA_SET ./nuScenes
cd ..

Ceate a folder named resources.

mkdir resources

Download the detections/tracklets and place them in the resources folder. We used CenterPoint detections (LIDAR) and CenterTrack tracklets (Camera). If you don't want to run CenterTrack yourself, we have the tracklets here. For the experiment with the learned score update function, please download the network's weights from here.

Usage

We made a bash script Results.sh to get the result table above. Running the script should take approximately 4 hours.

bash Results.sh

Learning update function model

In the directory learning_score_update_function

  • open lsuf_train
  • put your CMOT project path into CMOT_path
  • run the file to generate the model from the best results
  • feel free to experiment yourself different parameters

Acknowledgment

This project is not possible without multiple great open sourced codebases. We list some notable examples below.

CBMOT is deeply influenced by the following projects. Please consider citing the relevant papers.

@article{zhu2019classbalanced,
  title={Class-balanced Grouping and Sampling for Point Cloud 3D Object Detection},
  author={Zhu, Benjin and Jiang, Zhengkai and Zhou, Xiangxin and Li, Zeming and Yu, Gang},
  journal={arXiv:1908.09492},
  year={2019}
}

@article{lang2019pillar,
   title={PointPillars: Fast Encoders for Object Detection From Point Clouds},
   journal={CVPR},
   author={Lang, Alex H. and Vora, Sourabh and Caesar, Holger and Zhou, Lubing and Yang, Jiong and Beijbom, Oscar},
   year={2019},
}

@inproceedings{yin2021center,
  title={Center-based 3d object detection and tracking},
  author={Yin, Tianwei and Zhou, Xingyi and Krahenbuhl, Philipp},
  booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
  pages={11784--11793},
  year={2021}
}

@article{zhou2020tracking,
  title={Tracking Objects as Points},
  author={Zhou, Xingyi and Koltun, Vladlen and Kr{\"a}henb{\"u}hl, Philipp},
  journal={arXiv:2004.01177},
  year={2020}
}

@inproceedings{weng20203d,
  title={3d multi-object tracking: A baseline and new evaluation metrics},
  author={Weng, Xinshuo and Wang, Jianren and Held, David and Kitani, Kris},
  booktitle={2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)},
  pages={10359--10366},
  year={2020},
  organization={IEEE}
}

@article{chiu2020probabilistic,
  title={Probabilistic 3D Multi-Object Tracking for Autonomous Driving},
  author={Chiu, Hsu-kuang and Prioletti, Antonio and Li, Jie and Bohg, Jeannette},
  journal={arXiv preprint arXiv:2001.05673},
  year={2020}
}

Owner
Cognitive Systems Research Group
Autonomous Mobile Robots; Bioinformatics; Chemo- and Geoinformatics; Evolutionary Algorithms; Machine Learning
Cognitive Systems Research Group
Code of 3D Shape Variational Autoencoder Latent Disentanglement via Mini-Batch Feature Swapping for Bodies and Faces

3D Shape Variational Autoencoder Latent Disentanglement via Mini-Batch Feature Swapping for Bodies and Faces Installation After cloning the repo open

37 Dec 03, 2022
The PyTorch implementation of Directed Graph Contrastive Learning (DiGCL), NeurIPS-2021

Directed Graph Contrastive Learning Paper | Poster | Supplementary The PyTorch implementation of Directed Graph Contrastive Learning (DiGCL). In this

Tong Zekun 28 Jan 08, 2023
MoCap-Solver: A Neural Solver for Optical Motion Capture Data

MoCap-Solver is a data-driven-based robust marker denoising method, which takes raw mocap markers as input and outputs corresponding clean markers and skeleton motions.

55 Dec 28, 2022
FedCV: A Federated Learning Framework for Diverse Computer Vision Tasks

FedCV: A Federated Learning Framework for Diverse Computer Vision Tasks Image Classification Dataset: Google Landmark, COCO, ImageNet Model: Efficient

FedML-AI 62 Dec 10, 2022
Facial expression detector

A tensorflow convolutional neural network model to detect facial expressions.

Carlos Tardón Rubio 5 Apr 20, 2022
TensorFlow Tutorial and Examples for Beginners (support TF v1 & v2)

TensorFlow Examples This tutorial was designed for easily diving into TensorFlow, through examples. For readability, it includes both notebooks and so

Aymeric Damien 42.5k Jan 08, 2023
A PyTorch Library for Accelerating 3D Deep Learning Research

Kaolin: A Pytorch Library for Accelerating 3D Deep Learning Research Overview NVIDIA Kaolin library provides a PyTorch API for working with a variety

NVIDIA GameWorks 3.5k Jan 07, 2023
[ICCV 2021] HRegNet: A Hierarchical Network for Large-scale Outdoor LiDAR Point Cloud Registration

HRegNet: A Hierarchical Network for Large-scale Outdoor LiDAR Point Cloud Registration Introduction The repository contains the source code and pre-tr

Intelligent Sensing, Perception and Computing Group 55 Dec 14, 2022
Self-Supervised Learning of Event-based Optical Flow with Spiking Neural Networks

Self-Supervised Learning of Event-based Optical Flow with Spiking Neural Networks Work accepted at NeurIPS'21 [paper, video]. If you use this code in

TU Delft 43 Dec 07, 2022
Code for paper "A Critical Assessment of State-of-the-Art in Entity Alignment" (https://arxiv.org/abs/2010.16314)

A Critical Assessment of State-of-the-Art in Entity Alignment This repository contains the source code for the paper A Critical Assessment of State-of

Max Berrendorf 16 Oct 14, 2022
GRF: Learning a General Radiance Field for 3D Representation and Rendering

GRF: Learning a General Radiance Field for 3D Representation and Rendering [Paper] [Video] GRF: Learning a General Radiance Field for 3D Representatio

Alex Trevithick 243 Dec 29, 2022
[Link]mareteutral - pars tradg wth M []

pairs-trading-with-ML Jonathan Larkin, August 2017 One popular strategy classification is Pairs Trading. Though this category of strategies can exhibi

Jonathan Larkin 134 Jan 06, 2023
BboxToolkit is a tiny library of special bounding boxes.

BboxToolkit is a light codebase collecting some practical functions for the special-shape detection, such as oriented detection

jbwang1997 73 Jan 01, 2023
This repository contains the code and models for the following paper.

DC-ShadowNet Introduction This is an implementation of the following paper DC-ShadowNet: Single-Image Hard and Soft Shadow Removal Using Unsupervised

AuAgCu 65 Dec 27, 2022
A PyTorch-based library for fast prototyping and sharing of deep neural network models.

A PyTorch-based library for fast prototyping and sharing of deep neural network models.

78 Jan 03, 2023
Minimal diffusion models - Minimal code and simple experiments to play with Denoising Diffusion Probabilistic Models (DDPMs)

Minimal code and simple experiments to play with Denoising Diffusion Probabilist

Rithesh Kumar 16 Oct 06, 2022
PyTorch version of the paper 'Enhanced Deep Residual Networks for Single Image Super-Resolution' (CVPRW 2017)

About PyTorch 1.2.0 Now the master branch supports PyTorch 1.2.0 by default. Due to the serious version problem (especially torch.utils.data.dataloade

Sanghyun Son 2.1k Dec 27, 2022
Unrolled Variational Bayesian Algorithm for Image Blind Deconvolution

unfoldedVBA Unrolled Variational Bayesian Algorithm for Image Blind Deconvolution This repository contains the Pytorch implementation of the unrolled

Yunshi HUANG 2 Jul 10, 2022
MAVE: : A Product Dataset for Multi-source Attribute Value Extraction

MAVE: : A Product Dataset for Multi-source Attribute Value Extraction The dataset contains 3 million attribute-value annotations across 1257 unique ca

Google Research Datasets 89 Jan 08, 2023
TransGAN: Two Transformers Can Make One Strong GAN

[Preprint] "TransGAN: Two Transformers Can Make One Strong GAN", Yifan Jiang, Shiyu Chang, Zhangyang Wang

VITA 1.5k Jan 07, 2023