ICLR 2021 i-Mix: A Domain-Agnostic Strategy for Contrastive Representation Learning

Related tags

Deep Learningimix
Overview

Introduction

PyTorch code for the ICLR 2021 paper [i-Mix: A Domain-Agnostic Strategy for Contrastive Representation Learning].

@inproceedings{lee2021imix,
  title={i-Mix: A Domain-Agnostic Strategy for Contrastive Representation Learning},
  author={Lee, Kibok and Zhu, Yian and Sohn, Kihyuk and Li, Chun-Liang and Shin, Jinwoo and Lee, Honglak},
  booktitle={ICLR},
  year={2021}
}

Dependencies

  • python 3.7.4
  • numpy 1.17.2
  • pytorch 1.4.0
  • torchvision 0.5.0
  • cudatoolkit 10.1
  • librosa 0.8.0 for speech_commands
  • PIL 6.2.0 for GaussianBlur

Data

  • CIFAR-10/100 will automatically be downloaded.
  • For ImageNet, please refer to the [PyTorch ImageNet example]. The folder structure should be like data/imagenet/train/n01440764/
  • For speech commands, run bash speech_commands/download_speech_commands_dataset.sh.
  • For tabular datasets, download [covtype.data.gz] and [HIGGS.csv.gz], and place them in data/. They are processed when first loaded.

Running scripts

Please refer to [run.sh].

Plug-in example

For those who want to apply our method in their own code, we provide a minimal example based on [MoCo]:

# mixup: somewhere in main_moco.py
def mixup(input, alpha):
    beta = torch.distributions.beta.Beta(alpha, alpha)
    randind = torch.randperm(input.shape[0], device=input.device)
    lam = beta.sample([input.shape[0]]).to(device=input.device)
    lam = torch.max(lam, 1. - lam)
    lam_expanded = lam.view([-1] + [1]*(input.dim()-1))
    output = lam_expanded * input + (1. - lam_expanded) * input[randind]
    return output, randind, lam

# cutmix: somewhere in main_moco.py
def cutmix(input, alpha):
    beta = torch.distributions.beta.Beta(alpha, alpha)
    randind = torch.randperm(input.shape[0], device=input.device)
    lam = beta.sample().to(device=input.device)
    lam = torch.max(lam, 1. - lam)
    (bbx1, bby1, bbx2, bby2), lam = rand_bbox(input.shape[-2:], lam)
    output = input.clone()
    output[..., bbx1:bbx2, bby1:bby2] = output[randind][..., bbx1:bbx2, bby1:bby2]
    return output, randind, lam

def rand_bbox(size, lam):
    W, H = size
    cut_rat = (1. - lam).sqrt()
    cut_w = (W * cut_rat).to(torch.long)
    cut_h = (H * cut_rat).to(torch.long)

    cx = torch.zeros_like(cut_w, dtype=cut_w.dtype).random_(0, W)
    cy = torch.zeros_like(cut_h, dtype=cut_h.dtype).random_(0, H)

    bbx1 = (cx - cut_w // 2).clamp(0, W)
    bby1 = (cy - cut_h // 2).clamp(0, H)
    bbx2 = (cx + cut_w // 2).clamp(0, W)
    bby2 = (cy + cut_h // 2).clamp(0, H)

    new_lam = 1. - (bbx2 - bbx1).to(lam.dtype) * (bby2 - bby1).to(lam.dtype) / (W * H)

    return (bbx1, bby1, bbx2, bby2), new_lam

# https://github.com/facebookresearch/moco/blob/master/main_moco.py#L193
criterion = nn.CrossEntropyLoss(reduction='none').cuda(args.gpu)

# https://github.com/facebookresearch/moco/blob/master/main_moco.py#L302-L303
images[0], target_aux, lam = mixup(images[0], alpha=1.)
# images[0], target_aux, lam = cutmix(images[0], alpha=1.)
target = torch.arange(images[0].shape[0], dtype=torch.long).cuda()
output, _ = model(im_q=images[0], im_k=images[1])
loss = lam * criterion(output, target) + (1. - lam) * criterion(output, target_aux)

# https://github.com/facebookresearch/moco/blob/master/moco/builder.py#L142-L149
contrast = torch.cat([k, self.queue.clone().detach().t()], dim=0)
logits = torch.mm(q, contrast.t())

Note

Owner
Kibok Lee
Kibok Lee
DimReductionClustering - Dimensionality Reduction + Clustering + Unsupervised Score Metrics

Dimensionality Reduction + Clustering + Unsupervised Score Metrics Introduction

11 Nov 15, 2022
Deep Learning (with PyTorch)

Deep Learning (with PyTorch) This notebook repository now has a companion website, where all the course material can be found in video and textual for

Alfredo Canziani 6.2k Jan 07, 2023
Depth image based mouse cursor visual haptic

Depth image based mouse cursor visual haptic How to run it. Install pyqt5. Install python modules pip install Pillow pip install numpy For illustrati

Xiong Jie 17 Dec 20, 2022
Using this you can control your PC/Laptop volume by Hand Gestures (pinch-in, pinch-out) created with Python.

Hand Gesture Volume Controller Using this you can control your PC/Laptop volume by Hand Gestures (pinch-in, pinch-out). Code Firstly I have created a

Tejas Prajapati 16 Sep 11, 2021
Solutions and questions for AoC2021. Merry christmas!

Advent of Code 2021 Merry christmas! πŸŽ„ πŸŽ… To get solutions and approximate execution times for implementations, please execute the run.py script in t

Wilhelm Γ…gren 5 Dec 29, 2022
Unofficial pytorch implementation of paper "One-Shot Free-View Neural Talking-Head Synthesis for Video Conferencing"

One-Shot Free-View Neural Talking Head Synthesis Unofficial pytorch implementation of paper "One-Shot Free-View Neural Talking-Head Synthesis for Vide

ZLH 406 Dec 23, 2022
The code for our paper CrossFormer: A Versatile Vision Transformer Based on Cross-scale Attention.

CrossFormer This repository is the code for our paper CrossFormer: A Versatile Vision Transformer Based on Cross-scale Attention. Introduction Existin

cheerss 238 Jan 06, 2023
[AAAI-2022] Official implementations of MCL: Mutual Contrastive Learning for Visual Representation Learning

Mutual Contrastive Learning for Visual Representation Learning This project provides source code for our Mutual Contrastive Learning for Visual Repres

winycg 48 Jan 02, 2023
Supervised Contrastive Learning for Downstream Optimized Sequence Representations

SupCL-Seq πŸ“– Supervised Contrastive Learning for Downstream Optimized Sequence representations (SupCS-Seq) accepted to be published in EMNLP 2021, ext

Hooman Sedghamiz 18 Oct 21, 2022
HAT: Hierarchical Aggregation Transformers for Person Re-identification

HAT: Hierarchical Aggregation Transformers for Person Re-identification

11 Sep 05, 2022
A Graph Neural Network Tool for Recovering Dense Sub-graphs in Random Dense Graphs.

PYGON A Graph Neural Network Tool for Recovering Dense Sub-graphs in Random Dense Graphs. Installation This code requires to install and run the graph

Yoram Louzoun's Lab 0 Jun 25, 2021
Official Code for VideoLT: Large-scale Long-tailed Video Recognition (ICCV 2021)

Pytorch Code for VideoLT [Website][Paper] Updates [10/29/2021] Features uploaded to Google Drive, for access please send us an e-mail: zhangxing18 at

Skye 26 Sep 18, 2022
This repository contains the code for TABS, a 3D CNN-Transformer hybrid automated brain tissue segmentation algorithm using T1w structural MRI scans

This repository contains the code for TABS, a 3D CNN-Transformer hybrid automated brain tissue segmentation algorithm using T1w structural MRI scans. TABS relies on a Res-Unet backbone, with a Vision

6 Nov 07, 2022
Cryptocurrency Prediction with Artificial Intelligence (Deep Learning via LSTM Neural Networks)

Cryptocurrency Prediction with Artificial Intelligence (Deep Learning via LSTM Neural Networks)- Emirhan BULUT

Emirhan BULUT 102 Nov 18, 2022
ObjectDrawer-ToolBox: a graphical image annotation tool to generate ground plane masks for a 3D object reconstruction system

ObjectDrawer-ToolBox is a graphical image annotation tool to generate ground plane masks for a 3D object reconstruction system, Object Drawer.

77 Jan 05, 2023
Code & Models for 3DETR - an End-to-end transformer model for 3D object detection

3DETR: An End-to-End Transformer Model for 3D Object Detection PyTorch implementation and models for 3DETR. 3DETR (3D DEtection TRansformer) is a simp

Facebook Research 487 Dec 31, 2022
[NeurIPS'21 Spotlight] PyTorch code for our paper "Aligned Structured Sparsity Learning for Efficient Image Super-Resolution"

ASSL This repository is for a new network pruning method (Aligned Structured Sparsity Learning, ASSL) for efficient single image super-resolution (SR)

Huan Wang 47 Nov 28, 2022
Pytorch Lightning Distributed Accelerators using Ray

Distributed PyTorch Lightning Training on Ray This library adds new PyTorch Lightning accelerators for distributed training using the Ray distributed

166 Dec 27, 2022
Pose Transformers: Human Motion Prediction with Non-Autoregressive Transformers

Pose Transformers: Human Motion Prediction with Non-Autoregressive Transformers This is the repo used for human motion prediction with non-autoregress

Idiap Research Institute 26 Dec 14, 2022
Pytorch implementation of NeurIPS 2021 paper: Geometry Processing with Neural Fields.

Geometry Processing with Neural Fields Pytorch implementation for the NeurIPS 2021 paper: Geometry Processing with Neural Fields Guandao Yang, Serge B

Guandao Yang 162 Dec 16, 2022