ICLR 2021 i-Mix: A Domain-Agnostic Strategy for Contrastive Representation Learning

Related tags

Deep Learningimix
Overview

Introduction

PyTorch code for the ICLR 2021 paper [i-Mix: A Domain-Agnostic Strategy for Contrastive Representation Learning].

@inproceedings{lee2021imix,
  title={i-Mix: A Domain-Agnostic Strategy for Contrastive Representation Learning},
  author={Lee, Kibok and Zhu, Yian and Sohn, Kihyuk and Li, Chun-Liang and Shin, Jinwoo and Lee, Honglak},
  booktitle={ICLR},
  year={2021}
}

Dependencies

  • python 3.7.4
  • numpy 1.17.2
  • pytorch 1.4.0
  • torchvision 0.5.0
  • cudatoolkit 10.1
  • librosa 0.8.0 for speech_commands
  • PIL 6.2.0 for GaussianBlur

Data

  • CIFAR-10/100 will automatically be downloaded.
  • For ImageNet, please refer to the [PyTorch ImageNet example]. The folder structure should be like data/imagenet/train/n01440764/
  • For speech commands, run bash speech_commands/download_speech_commands_dataset.sh.
  • For tabular datasets, download [covtype.data.gz] and [HIGGS.csv.gz], and place them in data/. They are processed when first loaded.

Running scripts

Please refer to [run.sh].

Plug-in example

For those who want to apply our method in their own code, we provide a minimal example based on [MoCo]:

# mixup: somewhere in main_moco.py
def mixup(input, alpha):
    beta = torch.distributions.beta.Beta(alpha, alpha)
    randind = torch.randperm(input.shape[0], device=input.device)
    lam = beta.sample([input.shape[0]]).to(device=input.device)
    lam = torch.max(lam, 1. - lam)
    lam_expanded = lam.view([-1] + [1]*(input.dim()-1))
    output = lam_expanded * input + (1. - lam_expanded) * input[randind]
    return output, randind, lam

# cutmix: somewhere in main_moco.py
def cutmix(input, alpha):
    beta = torch.distributions.beta.Beta(alpha, alpha)
    randind = torch.randperm(input.shape[0], device=input.device)
    lam = beta.sample().to(device=input.device)
    lam = torch.max(lam, 1. - lam)
    (bbx1, bby1, bbx2, bby2), lam = rand_bbox(input.shape[-2:], lam)
    output = input.clone()
    output[..., bbx1:bbx2, bby1:bby2] = output[randind][..., bbx1:bbx2, bby1:bby2]
    return output, randind, lam

def rand_bbox(size, lam):
    W, H = size
    cut_rat = (1. - lam).sqrt()
    cut_w = (W * cut_rat).to(torch.long)
    cut_h = (H * cut_rat).to(torch.long)

    cx = torch.zeros_like(cut_w, dtype=cut_w.dtype).random_(0, W)
    cy = torch.zeros_like(cut_h, dtype=cut_h.dtype).random_(0, H)

    bbx1 = (cx - cut_w // 2).clamp(0, W)
    bby1 = (cy - cut_h // 2).clamp(0, H)
    bbx2 = (cx + cut_w // 2).clamp(0, W)
    bby2 = (cy + cut_h // 2).clamp(0, H)

    new_lam = 1. - (bbx2 - bbx1).to(lam.dtype) * (bby2 - bby1).to(lam.dtype) / (W * H)

    return (bbx1, bby1, bbx2, bby2), new_lam

# https://github.com/facebookresearch/moco/blob/master/main_moco.py#L193
criterion = nn.CrossEntropyLoss(reduction='none').cuda(args.gpu)

# https://github.com/facebookresearch/moco/blob/master/main_moco.py#L302-L303
images[0], target_aux, lam = mixup(images[0], alpha=1.)
# images[0], target_aux, lam = cutmix(images[0], alpha=1.)
target = torch.arange(images[0].shape[0], dtype=torch.long).cuda()
output, _ = model(im_q=images[0], im_k=images[1])
loss = lam * criterion(output, target) + (1. - lam) * criterion(output, target_aux)

# https://github.com/facebookresearch/moco/blob/master/moco/builder.py#L142-L149
contrast = torch.cat([k, self.queue.clone().detach().t()], dim=0)
logits = torch.mm(q, contrast.t())

Note

Owner
Kibok Lee
Kibok Lee
Unofficial pytorch implementation of the paper "Dynamic High-Pass Filtering and Multi-Spectral Attention for Image Super-Resolution"

DFSA Unofficial pytorch implementation of the ICCV 2021 paper "Dynamic High-Pass Filtering and Multi-Spectral Attention for Image Super-Resolution" (p

2 Nov 15, 2021
ivadomed is an integrated framework for medical image analysis with deep learning.

Repository on the collaborative IVADO medical imaging project between the Mila and NeuroPoly labs.

144 Dec 19, 2022
HGCAE Pytorch implementation. CVPR2021 accepted.

Hyperbolic Graph Convolutional Auto-Encoders Accepted to CVPR2021 🎉 Official PyTorch code of Unsupervised Hyperbolic Representation Learning via Mess

Junho Cho 37 Nov 13, 2022
Pointer networks Tensorflow2

Pointer networks Tensorflow2 原文:https://arxiv.org/abs/1506.03134 仅供参考与学习,内含代码备注 环境 tensorflow==2.6.0 tqdm matplotlib numpy 《pointer networks》阅读笔记 应用场景

HUANG HAO 7 Oct 27, 2022
A Pytorch implementation of SMU: SMOOTH ACTIVATION FUNCTION FOR DEEP NETWORKS USING SMOOTHING MAXIMUM TECHNIQUE

SMU_pytorch A Pytorch Implementation of SMU: SMOOTH ACTIVATION FUNCTION FOR DEEP NETWORKS USING SMOOTHING MAXIMUM TECHNIQUE arXiv https://arxiv.org/ab

Fuhang 36 Dec 24, 2022
Open-source code for Generic Grouping Network (GGN, CVPR 2022)

Open-World Instance Segmentation: Exploiting Pseudo Ground Truth From Learned Pairwise Affinity Pytorch implementation for "Open-World Instance Segmen

Meta Research 99 Dec 06, 2022
My implementation of Fully Convolutional Neural Networks in Keras

Keras-FCN This repository contains my implementation of Fully Convolutional Networks in Keras (Tensorflow backend). Currently, semantic segmentation c

The Duy Nguyen 15 Jan 13, 2020
An official implementation of "Exploiting a Joint Embedding Space for Generalized Zero-Shot Semantic Segmentation" (ICCV 2021) in PyTorch.

Exploiting a Joint Embedding Space for Generalized Zero-Shot Semantic Segmentation This is an official implementation of the paper "Exploiting a Joint

CV Lab @ Yonsei University 35 Oct 26, 2022
Video Matting Refinement For Python

Video-matting refinement Library (use pip to install) scikit-image numpy av matplotlib Run Static background python path_to_video.mp4 Moving backgroun

3 Jan 11, 2022
Recall Loss for Semantic Segmentation (This repo implements the paper: Recall Loss for Semantic Segmentation)

Recall Loss for Semantic Segmentation (This repo implements the paper: Recall Loss for Semantic Segmentation) Download Synthia dataset The model uses

32 Sep 21, 2022
Implementation of ConvMixer for "Patches Are All You Need? 🤷"

Patches Are All You Need? 🤷 This repository contains an implementation of ConvMixer for the ICLR 2022 submission "Patches Are All You Need?" by Asher

CMU Locus Lab 934 Jan 08, 2023
Over9000 optimizer

Optimizers and tests Every result is avg of 20 runs. Dataset LR Schedule Imagenette size 128, 5 epoch Imagewoof size 128, 5 epoch Adam - baseline OneC

Mikhail Grankin 405 Nov 27, 2022
CS_Final_Metal_surface_detection - This is a final project for CoderSchool Machine Learning bootcamp on 29/12/2021.

CS_Final_Metal_surface_detection This is a final project for CoderSchool Machine Learning bootcamp on 29/12/2021. The project is based on the dataset

Cuong Vo 1 Dec 29, 2021
Picasso: A CUDA-based Library for Deep Learning over 3D Meshes

The Picasso Library is intended for complex real-world applications with large-scale surfaces, while it also performs impressively on the small-scale applications over synthetic shape manifolds. We h

97 Dec 01, 2022
Discord Multi Tool that focuses on design and easy usage

Multi-Tool-v1.0 Discord Multi Tool that focuses on design and easy usage Delete webhook Block all friends Spam webhook Modify webhook Webhook info Tok

Lodi#0001 24 May 23, 2022
The implementation of the paper "A Deep Feature Aggregation Network for Accurate Indoor Camera Localization".

A Deep Feature Aggregation Network for Accurate Indoor Camera Localization This is the PyTorch implementation of our paper "A Deep Feature Aggregation

9 Dec 09, 2022
CTF challenges from redpwnCTF 2021

redpwnCTF 2021 Challenges This repository contains challenges from redpwnCTF 2021 in the rCDS format; challenge information is in the challenge.yaml f

redpwn 27 Dec 07, 2022
Code and data of the EMNLP 2021 paper "Mind the Style of Text! Adversarial and Backdoor Attacks Based on Text Style Transfer"

StyleAttack Code and data of the EMNLP 2021 paper "Mind the Style of Text! Adversarial and Backdoor Attacks Based on Text Style Transfer" Prepare Pois

THUNLP 19 Nov 20, 2022
The code of "Dependency Learning for Legal Judgment Prediction with a Unified Text-to-Text Transformer".

Code data_preprocess.py: preprocess data for Dependent-T5. parameters.py: define parameters of Dependent-T5. train_tools.py: traning and evaluation co

1 Apr 21, 2022
Find-Lane-Line - Use openCV library and Python to detect the road-lane-line

Find-Lane-Line This project is to use openCV library and Python to detect the road-lane-line. Data Pipeline Step one : Color Selection Step two : Cann

Kenny Cheng 3 Aug 17, 2022