The Few-Shot Bot: Prompt-Based Learning for Dialogue Systems

Related tags

Deep LearningFSB
Overview

Few-Shot Bot: Prompt-Based Learning for Dialogue Systems

This repository includes the dataset, experiments results, and code for the paper:

Few-Shot Bot: Prompt-Based Learning for Dialogue Systems PDF.

Authors: Andrea Madotto, Zhaojiang Lin, Genta Indra Winata, Pascale Fung

Abstract

Learning to converse using only a few examples is a grand challenge in Conversational AI. The current best conversational models, which are either good chit-chatters (e.g., BlenderBot) or goal-oriented systems (e.g., MinTL), are language models (LMs) fine-tuned on large conversational datasets. Training these models is expensive, both in terms of computational resources and time, and it is hard to keep these models up to date with new conversational skills. A simple yet unexplored solution is prompt-based few-shot learning (Brown et al. 2020) which does not require gradient-based fine-tuning but instead uses a few examples in the LM context as the only source of learning. In this paper, we explore prompt-based few-shot learning in dialogue tasks. We benchmark LMs of different sizes in 9 response generation tasks, which include a variety of knowledge-grounded tasks, task-oriented generations, general open-chat, and controlled stylistic generation, and 5 conversational parsing tasks, which include dialogue state tracking, graph path generation, persona information extraction, and document retrieval. The current largest, released, LM (GPT-J-6B) achieves competitive performance to full-training state-of-the-art models by using the prompt-based few-shot learning, thus no training. Moreover, we proposed a novel perplexity-based classifier, that also does not require any fine-tuning, to select the most appropriate prompt given a dialogue history, as to create an all-in-one model with multiple dialogue skills. Finally, by combining the power of prompt-based few-shot learning and the skill selector, we create an end-to-end chatbot named the Few-Shot Bot, which automatically selects the most appropriate conversational skill, queries different KBs or the internet, and uses it to generate a human-like response, all by using only one dialogue example per skill.

Installation

In this repo, we load all the validation and test sets used in the evaluation. For running the experiments and the demo, you should install the following requirements:

pip install -r requirements.txt

Basic Running

Reproducing the results and plots

The generation folder stores the generated responses of the experiments in all datasets. To generate the tables and the plots in the paper, run

python generate_plots_tables.py

This script loads all the files and computes the mean between different runs and it generates the plots. Note that this script is very custum for each datasets, but it can serve as guide line for future extentions.

Running the experiments

There are three main files to run 1) response generation (main_response_generation.py), 2) conversational parsing (main_conversational_parsing.py), and 3) skill-selector (main_skill_selector.py). In these files, we load the necessary prompt (load_prefix) and we run the generation (generate_response) for each sample in the test set. Since each dialogue skill require a different template, as shown in the paper, we create a function that converts structured data into the correct shot prompt. An example of this function can be found in prompts/persona_chat.py, and in generic_prompts.py we store the generation functions.

In each main file there is configuration object (mapper) which specify meta-information about the task (i.e., number of shots, generation length, decoding type, prompt converter). Expecially for conversational parsing, there are different decoding type. For example, in MWOZ the model generates the dialogue state, which is further looped into the next turn.

How to run?

For example, to run the persona chat experiments (0, 1, k-shots), you can use the following command:

python main_response_generation.py --model_checkpoint EleutherAI/gpt-j-6B --dataset persona --gpu 0

In case your GPU has less that 16GB, then you could add --multigpu to spawn 4 GPUs (e.g., 1080Ti) and do inference in parallel. Similarly, for conversational parsing tasks, you could use:

python main_conversational_parsing.py --model_checkpoint EleutherAI/gpt-j-6B --dataset wow-parse --gpu 0

Notice that some parsing task requires a knowledge base (e.g., dialKG-parse requires the KG in neo4j). Finally, to run the skill-selector task, you could use:

python main_skill_selector.py --model_checkpoint EleutherAI/gpt-j-6B --shots_k 6 --repetition 1 --gpu 0

where repetition is the seed for selecting random samples in the prompts.

Runners

In the runners folder, we provide a rudimental runner to run all the experiments and reproduce the results in the paper.

Few-Shot Bot

There are two modes for the FSB such as 1) controlled style generation and 2) full-model. Currently we support the controlled style generation model. Check the FSB-CG.ipynb to try to interact with FSB in your local machine, or try directly in colab at https://colab.research.google.com/drive/15hQv1V3Cs5kQVfLOE_FZc1VCWQ3YpWVd?usp=sharing (Remeber to select the enviroment with GPU).

Owner
Andrea Madotto
Deep learning, Machine Learning, Learning To Learn, Natural Language Processing.
Andrea Madotto
Group Fisher Pruning for Practical Network Compression(ICML2021)

Group Fisher Pruning for Practical Network Compression (ICML2021) By Liyang Liu*, Shilong Zhang*, Zhanghui Kuang, Jing-Hao Xue, Aojun Zhou, Xinjiang W

Shilong Zhang 129 Dec 13, 2022
Exploring Cross-Image Pixel Contrast for Semantic Segmentation

Exploring Cross-Image Pixel Contrast for Semantic Segmentation Exploring Cross-Image Pixel Contrast for Semantic Segmentation, Wenguan Wang, Tianfei Z

Tianfei Zhou 510 Jan 02, 2023
Code for our WACV 2022 paper "Hyper-Convolution Networks for Biomedical Image Segmentation"

Hyper-Convolution Networks for Biomedical Image Segmentation Code for our WACV 2022 paper "Hyper-Convolution Networks for Biomedical Image Segmentatio

Tianyu Ma 17 Nov 02, 2022
The implementation of DeBERTa

DeBERTa: Decoding-enhanced BERT with Disentangled Attention This repository is the official implementation of DeBERTa: Decoding-enhanced BERT with Dis

Microsoft 1.2k Jan 06, 2023
Tensors and neural networks in Haskell

Hasktorch Hasktorch is a library for tensors and neural networks in Haskell. It is an independent open source community project which leverages the co

hasktorch 920 Jan 04, 2023
Axel - 3D printed robotic hands and they controll with Raspberry Pi and Arduino combo

Axel It's our graduation project about 3D printed robotic hands and they control

0 Feb 14, 2022
This is the repository of shape matching algorithm Iterative Rotations and Assignments (IRA)

Description This is the repository of shape matching algorithm Iterative Rotations and Assignments (IRA), described in the publication [1]. Directory

MAMMASMIAS Consortium 6 Nov 14, 2022
This repo contains code to reproduce all experiments in Equivariant Neural Rendering

Equivariant Neural Rendering This repo contains code to reproduce all experiments in Equivariant Neural Rendering by E. Dupont, M. A. Bautista, A. Col

Apple 83 Nov 16, 2022
A package related to building quasi-fibration symmetries

qf A package related to building quasi-fibration symmetries. If you'd like to learn more about how it works, see the brief explanation and References

Paolo Boldi 1 Dec 01, 2021
Mememoji - A facial expression classification system that recognizes 6 basic emotions: happy, sad, surprise, fear, anger and neutral.

a project built with deep convolutional neural network and ❤️ Table of Contents Motivation The Database The Model 3.1 Input Layer 3.2 Convolutional La

Jostine Ho 761 Dec 05, 2022
Source code for paper "Deep Diffusion Models for Robust Channel Estimation", TBA.

diffusion-channels Source code for paper "Deep Diffusion Models for Robust Channel Estimation". Generic flow: Use 'matlab/main.mat' to generate traini

The University of Texas Computational Sensing and Imaging Lab 15 Dec 22, 2022
Keras + Hyperopt: A very simple wrapper for convenient hyperparameter optimization

This project is now archived. It's been fun working on it, but it's time for me to move on. Thank you for all the support and feedback over the last c

Max Pumperla 2.1k Jan 03, 2023
Jittor is a high-performance deep learning framework based on JIT compiling and meta-operators.

Jittor: a Just-in-time(JIT) deep learning framework Quickstart | Install | Tutorial | Chinese Jittor is a high-performance deep learning framework bas

2.7k Jan 03, 2023
Using deep actor-critic model to learn best strategies in pair trading

Deep-Reinforcement-Learning-in-Stock-Trading Using deep actor-critic model to learn best strategies in pair trading Abstract Partially observed Markov

281 Dec 09, 2022
ECAENet (TensorFlow and Keras)

ECAENet: EfficientNet with Efficient Channel Attention for Plant Species Recognition (SCI:Q3) (Journal of Intelligent & Fuzzy Systems)

4 Dec 22, 2022
Parametric Contrastive Learning (ICCV2021)

Parametric-Contrastive-Learning This repository contains the implementation code for ICCV2021 paper: Parametric Contrastive Learning (https://arxiv.or

DV Lab 156 Dec 21, 2022
[CVPR'21] Projecting Your View Attentively: Monocular Road Scene Layout Estimation via Cross-view Transformation

Projecting Your View Attentively: Monocular Road Scene Layout Estimation via Cross-view Transformation Weixiang Yang, Qi Li, Wenxi Liu, Yuanlong Yu, Y

118 Dec 26, 2022
[WWW 2022] Zero-Shot Stance Detection via Contrastive Learning

PT-HCL for Zero-Shot Stance Detection The code of this repository is constantly being updated... Please look forward to it! Introduction This reposito

Akuchi 12 Dec 21, 2022
Evaluating saliency methods on artificial data with different background types

Evaluating saliency methods on artificial data with different background types This repository contains the relevant code for the MedNeurips 2021 subm

2 Jul 05, 2022
ProMP: Proximal Meta-Policy Search

ProMP: Proximal Meta-Policy Search Implementations corresponding to ProMP (Rothfuss et al., 2018). Overall this repository consists of two branches: m

Jonas Rothfuss 212 Dec 20, 2022