Source code for "Interactive All-Hex Meshing via Cuboid Decomposition [SIGGRAPH Asia 2021]".

Overview

Interactive All-Hex Meshing via Cuboid Decomposition

teaser Video demonstration

This repository contains an interactive software to the PolyCube-based hex-meshing problem. You can solve hex meshing by playing minecraft!

Features include:

  • a 4-stage interactive pipeline that can robustly generate high-quality hex meshes from an input tetrahedral mesh;
  • extensive user control over each stage, such as editing the voxelized PolyCube, positioning surface vertices, and exploring the trade-off among competing quality metrics;
  • automatic alternatives based on GPU-powered continuous optimization that can run at interactive speed.

It is the original implementation of the SIGGRAPH Asia 2021 paper "Interactive All-Hex Meshing via Cuboid Decomposition" by Lingxiao Li, Paul Zhang, Dmitriy Smirnov, Mazdak Abulnaga, Justin Solomon. Check out our paper for a complete description of our pipeline!

Organization

There are three main components of the project.

  • The geomlib folder contains a standalone C++ library with GPU-based geometric operations including point-triangle projection (in arbitrary dimensions), point-tetrahedron projection (in arbitrary dimensions), point-in-tet-mesh inclusion testing, sampling on a triangular mesh, capable of handling tens of thousands of point queries on large meshes in milliseconds.
  • The vkoo folder contains a standalone object-oriented Vulkan graphics engine that is built based on the official Vulkan samples code with a lot of simplification and modification for the purpose of this project.
  • The hex folder contains the application-specific code for our interactive PolyCube-based hex meshing software, and should be most relevant for learning about the implementation details of our paper.

In addition,

  • results.zip contains the *.h5 project file and the *.mesh output hex mesh file for each model in the Table 2 of the paper. The *.h5 project files can be loaded in our software using File > Open.
  • The assets folder contains a small number of tetrahedral meshes to test on, but you can include your own meshes easily (if you only have triangular meshes, try using TetGen or this to mesh the interior first).
  • The external folder contains additional dependencies that are included in the repo.

Dependencies

Main dependencies that are not included in the repo and should be installed first:

  • CMake
  • CUDA (tested with 11.2, 11.3, 11.4, 11.5) and cuDNN
  • Pytorch C++ frontend (tested with 1.7, 1.8, 1.9, 1.10)
  • Vulkan SDK
  • Python3
  • HDF5

There are additional dependencies in external and should be built correctly with the provided CMake hierarchy:

  • Eigen
  • glfw
  • glm
  • glslang
  • imgui
  • spdlog
  • spirv-cross
  • stb
  • yaml-cpp

Linux Instruction

The instruction is slightly different on various Linux distributions. We have tested on Arch Linux and Ubuntu 20.04. First install all dependencies above using the respective package manager. Then download and unzip Pytorch C++ frontend for Linux (tested with cxx11 ABI) -- it should be under the tab Libtorch > C++/Java > CUDA 11.x. Add Torch_DIR=<unzipped folder> to your environment variable lists (or add your unzipped folder to CMAKE_PREFIX_PATH). Then clone the repo (be sure to use --recursive to clone the submodules as well). Next run the usual cmake/make commands to build target hex in Debug or Release mode:

mkdir -p build/Release
cd build/Release
cmake ../.. -DCMAKE_BUILD_TYPE=Release
make hex -j

This should generate an executable named hex under bin/Release/hex which can be run directly. See CMakeLists.txt for more information.

Windows Instruction

Compiling on Windows is trickier than on Linux. The following procedure has been tested to work on multiple Windows machines.

  • Download and install Visual Studio 2019
  • Download and install the newest CUDA Toolkit (tested with 11.2)
  • Download and install cuDNN for Windows (this amounts to copying a bunch of dll's to the CUDA path)
  • Download and install the newest Vulkan SDK binary for Windows
  • Download and install Python3
  • Download and unzip Pytorch C++ frontend for Windows. Then add TORCH_DIR=<unzipped folder> to your environment variable lists.
  • Download and install HDF5 for Windows
  • In VS2019, install CMake tools, and then build the project following this This should generate an executable under bin/Debug or bin/Release.
Owner
Lingxiao Li
Lingxiao Li
这是一个facenet-pytorch的库,可以用于训练自己的人脸识别模型。

Facenet:人脸识别模型在Pytorch当中的实现 目录 性能情况 Performance 所需环境 Environment 注意事项 Attention 文件下载 Download 预测步骤 How2predict 训练步骤 How2train 参考资料 Reference 性能情况 训练数据

Bubbliiiing 210 Jan 06, 2023
Implementation of the paper "Generating Symbolic Reasoning Problems with Transformer GANs"

Generating Symbolic Reasoning Problems with Transformer GANs This is the implementation of the paper Generating Symbolic Reasoning Problems with Trans

Reactive Systems Group 1 Apr 18, 2022
Reference models and tools for Cloud TPUs.

Cloud TPUs This repository is a collection of reference models and tools used with Cloud TPUs. The fastest way to get started training a model on a Cl

5k Jan 05, 2023
Official Implementation for "ReStyle: A Residual-Based StyleGAN Encoder via Iterative Refinement" https://arxiv.org/abs/2104.02699

ReStyle: A Residual-Based StyleGAN Encoder via Iterative Refinement Recently, the power of unconditional image synthesis has significantly advanced th

967 Jan 04, 2023
Official code for 'Robust Siamese Object Tracking for Unmanned Aerial Manipulator' and offical introduction to UAMT100 benchmark

SiamSA: Robust Siamese Object Tracking for Unmanned Aerial Manipulator Demo video 📹 Our video on Youtube and bilibili demonstrates the evaluation of

Intelligent Vision for Robotics in Complex Environment 12 Dec 18, 2022
Gif-caption - A straightforward GIF Captioner written in Python

Broksy's GIF Captioner Have you ever wanted to easily caption a GIF without havi

3 Apr 09, 2022
A resource for learning about ML, DL, PyTorch and TensorFlow. Feedback always appreciated :)

A resource for learning about ML, DL, PyTorch and TensorFlow. Feedback always appreciated :)

Aladdin Persson 4.7k Jan 08, 2023
Meta graph convolutional neural network-assisted resilient swarm communications

Resilient UAV Swarm Communications with Graph Convolutional Neural Network This repository contains the source codes of Resilient UAV Swarm Communicat

62 Dec 06, 2022
Neural style transfer in PyTorch.

style-transfer-pytorch An implementation of neural style transfer (A Neural Algorithm of Artistic Style) in PyTorch, supporting CPUs and Nvidia GPUs.

Katherine Crowson 395 Jan 06, 2023
CVPR 2021: "The Spatially-Correlative Loss for Various Image Translation Tasks"

Spatially-Correlative Loss arXiv | website We provide the Pytorch implementation of "The Spatially-Correlative Loss for Various Image Translation Task

Chuanxia Zheng 89 Jan 04, 2023
This repository contains the implementation of the paper: "Towards Frequency-Based Explanation for Robust CNN"

RobustFreqCNN About This repository contains the implementation of the paper "Towards Frequency-Based Explanation for Robust CNN" arxiv. It primarly d

Sarosij Bose 2 Jan 23, 2022
Using Random Effects to Account for High-Cardinality Categorical Features and Repeated Measures in Deep Neural Networks

LMMNN Using Random Effects to Account for High-Cardinality Categorical Features and Repeated Measures in Deep Neural Networks This is the working dire

Giora Simchoni 10 Nov 02, 2022
Segmentation in Style: Unsupervised Semantic Image Segmentation with Stylegan and CLIP

Segmentation in Style: Unsupervised Semantic Image Segmentation with Stylegan and CLIP Abstract: We introduce a method that allows to automatically se

Daniil Pakhomov 134 Dec 19, 2022
Image Segmentation Evaluation

Image Segmentation Evaluation Martin Keršner, [email protected] Evaluation

Martin Kersner 273 Oct 28, 2022
Recurrent Variational Autoencoder that generates sequential data implemented with pytorch

Pytorch Recurrent Variational Autoencoder Model: This is the implementation of Samuel Bowman's Generating Sentences from a Continuous Space with Kim's

Daniil Gavrilov 347 Nov 14, 2022
Tensorflow 2 implementations of the C-SimCLR and C-BYOL self-supervised visual representation methods from "Compressive Visual Representations" (NeurIPS 2021)

Compressive Visual Representations This repository contains the source code for our paper, Compressive Visual Representations. We developed informatio

Google Research 30 Nov 23, 2022
Code for Domain Adaptive Video Segmentation via Temporal Consistency Regularization in ICCV 2021

Domain Adaptive Video Segmentation via Temporal Consistency Regularization Updates 08/2021: check out our domain adaptation for sematic segmentation p

36 Dec 12, 2022
Few-Shot Graph Learning for Molecular Property Prediction

Few-shot Graph Learning for Molecular Property Prediction Introduction This is the source code and dataset for the following paper: Few-shot Graph Lea

Zhichun Guo 94 Dec 12, 2022
Diverse graph algorithms implemented using JGraphT library.

# 1. Installing Maven & Pandas First, please install Java (JDK11) and Python 3 if they are not already. Next, make sure that Maven (for importing J

See Woo Lee 3 Dec 17, 2022
One-line your code easily but still with the fun of doing so!

One-liner-iser One-line your code easily but still with the fun of doing so! Have YOU ever wanted to write one-line Python code, but don't have the sa

5 May 04, 2022