DiffStride: Learning strides in convolutional neural networks

Overview

DiffStride: Learning strides in convolutional neural networks

Overview

DiffStride is a pooling layer with learnable strides. Unlike strided convolutions, average pooling or max-pooling that require cross-validating stride values at each layer, DiffStride can be initialized with an arbitrary value at each layer (e.g. (2, 2) and during training its strides will be optimized for the task at hand.

We describe DiffStride in our ICLR 2022 paper Learning Strides in Convolutional Neural Network. Compared to the experiments described in the paper, this implementation uses a Pre-Act Resnet and uses Mixup in training.

Installation

To install the diffstride library, run the following pip git clone this repo:

git clone https://github.com/google-research/diffstride.git

The cd into the root and run the command:

pip install -e .

Example training

To run an example training on CIFAR10 and save the result in TensorBoard:

python3 -m diffstride.examples.main \
  --gin_config=cifar10.gin \
  --gin_bindings="train.workdir = '/tmp/exp/diffstride/resnet18/'"

Using custom parameters

This implementation uses Gin to parametrize the model, data processing and training loop. To use custom parameters, one should edit examples/cifar10.gin.

For example, to train with SpectralPooling on cifar100:

data.load_datasets:
  name = 'cifar100'

resnet.Resnet:
  pooling_cls = @pooling.FixedSpectralPooling

Or to train with strided convolutions and without Mixup:

data.load_datasets:
  mixup_alpha = 0.0

resnet.Resnet:
  pooling_cls = None

Results

This current implementation gives the following accuracy on CIFAR-10 and CIFAR-100, averaged over three runs. To show the robustness of DiffStride to stride initialization, we run both with the standard strides of ResNet (resnet.resnet18.strides = '1, 1, 2, 2, 2') and with a 'poor' choice of strides (resnet.resnet18.strides = '1, 1, 3, 2, 3'). Unlike Strided Convolutions and fixed Spectral Pooling, DiffStride is not affected by the stride initialization.

CIFAR-10

Pooling Test Accuracy (%) w/ strides = (1, 1, 2, 2, 2) Test Accuracy (%) w/ strides = (1, 1, 3, 2, 3)
Strided Convolution (Baseline) 91.06 ± 0.04 89.21 ± 0.27
Spectral Pooling 93.49 ± 0.05 92.00 ± 0.08
DiffStride 94.20 ± 0.06 94.19 ± 0.15

CIFAR-100

Pooling Test Accuracy (%) w/ strides = (1, 1, 2, 2, 2) Test Accuracy (%) w/ strides = (1, 1, 3, 2, 3)
Strided Convolution (Baseline) 65.75 ± 0.39 60.82 ± 0.42
Spectral Pooling 72.86 ± 0.23 67.74 ± 0.43
DiffStride 76.08 ± 0.23 76.09 ± 0.06

CPU/GPU Warning

We rely on the tensorflow FFT implementation which requires the input data to be in the channels_first format. This is usually not the regular data format of most datasets (including CIFAR) and running with channels_first also prevents from using of convolutions on CPU. Therefore even if we do support channels_last data format for CPU compatibility , we do encourage the user to run with channels_first data format on GPU.

Reference

If you use this repository, please consider citing:

@article{riad2022diffstride,
  title={Learning Strides in Convolutional Neural Networks},
  author={Riad, Rachid and Teboul, Olivier and Grangier, David and Zeghidour, Neil},
  journal={ICLR},
  year={2022}
}

Disclainer

This is not an official Google product.

Owner
Google Research
Google Research
Implementation of ICCV2021(Oral) paper - VMNet: Voxel-Mesh Network for Geodesic-aware 3D Semantic Segmentation

VMNet: Voxel-Mesh Network for Geodesic-Aware 3D Semantic Segmentation Created by Zeyu HU Introduction This work is based on our paper VMNet: Voxel-Mes

HU Zeyu 82 Dec 27, 2022
A PyTorch implementation of "Semi-Supervised Graph Classification: A Hierarchical Graph Perspective" (WWW 2019)

SEAL ⠀⠀⠀ A PyTorch implementation of Semi-Supervised Graph Classification: A Hierarchical Graph Perspective (WWW 2019) Abstract Node classification an

Benedek Rozemberczki 202 Dec 27, 2022
Detectron2 is FAIR's next-generation platform for object detection and segmentation.

Detectron2 is Facebook AI Research's next generation software system that implements state-of-the-art object detection algorithms. It is a ground-up r

Facebook Research 23.3k Jan 08, 2023
Python Implementation of Chess Playing AI with variable difficulty

Chess AI with variable difficulty level implemented using the MiniMax AB-Pruning Algorithm

Ali Imran 7 Feb 20, 2022
MAGMA - a GPT-style multimodal model that can understand any combination of images and language

MAGMA -- Multimodal Augmentation of Generative Models through Adapter-based Finetuning Authors repo (alphabetical) Constantin (CoEich), Mayukh (Mayukh

Aleph Alpha GmbH 331 Jan 03, 2023
HyperDict - Self linked dictionary in Python

Hyper Dictionary Advanced python dictionary(hash-table), which can link it-self

8 Feb 06, 2022
Pytorch implement of 'Unmixing based PAN guided fusion network for hyperspectral imagery'

Pgnet There's a improved version compared with the publication in Tgrs with the modification in the deduction of the PDIN block: https://arxiv.org/abs

5 Jul 01, 2022
Video-Music Transformer

VMT Video-Music Transformer (VMT) is an attention-based multi-modal model, which generates piano music for a given video. Paper https://arxiv.org/abs/

Chin-Tung Lin 5 Jul 13, 2022
Self Driving RC Car Code

Derp Learning Derp Learning is a Python package that collects data, trains models, and then controls an RC car for track racing. Hardware You will nee

Not Karol 39 Dec 07, 2022
Progressive Coordinate Transforms for Monocular 3D Object Detection

Progressive Coordinate Transforms for Monocular 3D Object Detection This repository is the official implementation of PCT. Introduction In this paper,

58 Nov 06, 2022
LowRankModels.jl is a julia package for modeling and fitting generalized low rank models.

LowRankModels.jl LowRankModels.jl is a Julia package for modeling and fitting generalized low rank models (GLRMs). GLRMs model a data array by a low r

Madeleine Udell 183 Dec 17, 2022
[NeurIPS-2021] Slow Learning and Fast Inference: Efficient Graph Similarity Computation via Knowledge Distillation

Efficient Graph Similarity Computation - (EGSC) This repo contains the source code and dataset for our paper: Slow Learning and Fast Inference: Effici

23 Nov 11, 2022
FishNet: One Stage to Detect, Segmentation and Pose Estimation

FishNet FishNet: One Stage to Detect, Segmentation and Pose Estimation Introduction In this project, we combine target detection, instance segmentatio

1 Oct 05, 2022
(NeurIPS '21 Spotlight) IQ-Learn: Inverse Q-Learning for Imitation

Inverse Q-Learning (IQ-Learn) Official code base for IQ-Learn: Inverse soft-Q Learning for Imitation, NeurIPS '21 Spotlight IQ-Learn is an easy-to-use

Divyansh Garg 102 Dec 20, 2022
Real-time LIDAR-based Urban Road and Sidewalk detection for Autonomous Vehicles 🚗

urban_road_filter: a real-time LIDAR-based urban road and sidewalk detection algorithm for autonomous vehicles Dependency ROS (tested with Kinetic and

JKK - Vehicle Industry Research Center 180 Dec 12, 2022
Supervision Exists Everywhere: A Data Efficient Contrastive Language-Image Pre-training Paradigm

DeCLIP Supervision Exists Everywhere: A Data Efficient Contrastive Language-Image Pre-training Paradigm. Our paper is available in arxiv Updates ** Ou

Sense-GVT 470 Dec 30, 2022
Code to reproduce the results in "Visually Grounded Reasoning across Languages and Cultures", EMNLP 2021.

marvl-code [WIP] This is the implementation of the approaches described in the paper: Fangyu Liu*, Emanuele Bugliarello*, Edoardo M. Ponti, Siva Reddy

25 Nov 15, 2022
A PyTorch implementation of "SimGNN: A Neural Network Approach to Fast Graph Similarity Computation" (WSDM 2019).

SimGNN ⠀⠀⠀ A PyTorch implementation of SimGNN: A Neural Network Approach to Fast Graph Similarity Computation (WSDM 2019). Abstract Graph similarity s

Benedek Rozemberczki 534 Dec 25, 2022
PyTorch implementation of the paper: Label Noise Transition Matrix Estimation for Tasks with Lower-Quality Features

Label Noise Transition Matrix Estimation for Tasks with Lower-Quality Features Estimate the noise transition matrix with f-mutual information. This co

<a href=[email protected]"> 1 Jun 05, 2022
Train CNNs for the fruits360 data set in NTOU CS「Machine Vision」class.

CNNs fruits360 Train CNNs for the fruits360 data set in NTOU CS「Machine Vision」class. CNN on a pretrained model Build a CNN on a pretrained model, Res

Ricky Chuang 1 Mar 07, 2022