The implementation of "Bootstrapping Semantic Segmentation with Regional Contrast".

Overview

ReCo - Regional Contrast

This repository contains the source code of ReCo and baselines from the paper, Bootstrapping Semantic Segmentation with Regional Contrast, introduced by Shikun Liu, Shuaifeng Zhi, Edward Johns, and Andrew Davison.

Check out our project page for more qualitative results.

Datasets

ReCo is evaluated with three datasets: CityScapes, PASCAL VOC and SUN RGB-D in the full label mode, among which CityScapes and PASCAL VOC are additionally evaluated in the partial label mode.

  • For CityScapes, please download the original dataset from the official CityScapes site: leftImg8bit_trainvaltest.zip and gtFine_trainvaltest.zip. Create and extract them to the corresponding dataset/cityscapes folder.
  • For Pascal VOC, please download the original training images from the official PASCAL site: VOCtrainval_11-May-2012.tar and the augmented labels here: SegmentationClassAug.zip. Extract the folder JPEGImages and SegmentationClassAug into the corresponding dataset/pascal folder.
  • For SUN RGB-D, please download the train dataset here: SUNRGBD-train_images.tgz, test dataset here: SUNRGBD-test_images.tgz and labels here: sunrgbd_train_test_labels.tar.gz. Extract and place them into the corresponding dataset/sun folder.

After making sure all datasets having been downloaded and placed correctly, run each processing file python dataset/{DATASET}_preprocess.py to pre-process each dataset ready for the experiments. The preprocessing file also includes generating partial label for Cityscapes and Pascal dataset with three random seeds. Feel free to modify the partial label size and random seed to suit your own research setting.

For the lazy ones: just download the off-the-shelf pre-processed datasets here: CityScapes, Pascal VOC and SUN RGB-D.

Training Supervised and Semi-supervised Models

In this paper, we introduce two novel training modes for semi-supervised learning.

  1. Full Labels Partial Dataset: A sparse subset of training images has full ground-truth labels, with the remaining data unlabelled.
  2. Partial Labels Full Dataset: All images have some labels, but covering only a sparse subset of pixels.

Running the following four scripts would train each mode with supervised or semi-supervised methods respectively:

python train_sup.py             # Supervised learning with full labels.
python train_semisup.py         # Semi-supervised learning with full labels.
python train_sup_partial.py     # Supervised learning with partial labels.
python train_semisup_patial.py  # Semi-supervised learning with partial labels.

Important Flags

All supervised and semi-supervised methods can be trained with different flags (hyper-parameters) when running each training script. We briefly introduce some important flags for the experiments below.

Flag Name Usage Comments
num_labels number of labelled images in the training set, choose 0 for training all labelled images only available in the full label mode
partial percentage of labeled pixels for each class in the training set, choose p0, p1, p5, p25 for training 1, 1%, 5%, 25% labelled pixel(s) respectively only available in the partial label mode
num_negatives number of negative keys sampled for each class in each mini-batch only applied when training with ReCo loss
num_queries number of queries sampled for each class in each mini-batch only applied when training with ReCo loss
output_dim dimensionality for pixel-level representation only applied when training with ReCo loss
temp temperature used in contrastive learning only applied when training with ReCo loss
apply_aug semi-supervised methods with data augmentation, choose cutout, cutmix, classmix only available in the semi-supervised methods; our implementations for CutOut, CutMix and ClassMix
weak_threshold weak threshold delta_w in active sampling only applied when training with ReCo loss
strong_threshold strong threshold delta_s in active sampling only applied when training with ReCo loss
apply_reco toggle on or off apply our proposed ReCo loss

Training ReCo + ClassMix with the fewest full label setting in each dataset (the least appeared classes in each dataset have appeared in 5 training images):

python train_semisup.py --dataset pascal --num_labels 60 --apply_aug classmix --apply_reco
python train_semisup.py --dataset cityscapes --num_labels 20 --apply_aug classmix --apply_reco
python train_semisup.py --dataset sun --num_labels 50 --apply_aug classmix --apply_reco

Training ReCo + ClassMix with the fewest partial label setting in each dataset (each class in each training image only has 1 labelled pixel):

python train_semisup_partial.py --dataset pascal --partial p0 --apply_aug classmix --apply_reco
python train_semisup_partial.py --dataset cityscapes --partial p0 --apply_aug classmix --apply_reco
python train_semisup_partial.py --dataset sun --partial p0 --apply_aug classmix --apply_reco

Training ReCo + Supervised with all labelled data:

python train_sup.py --dataset {DATASET} --num_labels 0 --apply_reco

Training with ReCo is expected to require 12 - 16G of memory in a single GPU setting. All the other baselines can be trained under 12G in a single GPU setting.

Visualisation on Pre-trained Models

We additionally provide the pre-trained baselines and our method for 20 labelled Cityscapes and 60 labelled Pascal VOC, as examples for visualisation. The precise mIoU performance for each model is listed in the following table. The pre-trained models will produce the exact same qualitative results presented in the original paper.

Supervised ClassMix ReCo + ClassMix
CityScapes (20 Labels) 38.10 [link] 45.13 [link] 50.14 [link]
Pascal VOC (60 Labels) 36.06 [link] 53.71 [link] 57.12 [link]

Download the pre-trained models with the links above, then create and place them into the folder model_weights in this repository. Run python visual.py to visualise the results.

Other Notices

  1. We observe that the performance for the full label semi-supervised setting in CityScapes dataset is not stable across different machines, for which all methods may drop 2-5% performance, though the ranking keeps the same. Different GPUs in the same machine do not affect the performance. The performance for the other datasets in the full label mode, and the performance for all datasets in the partial label mode is consistent.
  2. Please use --seed 0, 1, 2 to accurately reproduce/compare our results with the exactly same labelled and unlabelled split we used in our experiments.

Citation

If you found this code/work to be useful in your own research, please considering citing the following:

@article{liu2021reco,
    title={Bootstrapping Semantic Segmentation with Regional Contrast},
    author={Liu, Shikun and Zhi, Shuaifeng and Johns, Edward and Davison, Andrew J},
    journal={arXiv preprint arXiv:2104.04465},
    year={2021}
}

Contact

If you have any questions, please contact [email protected].

Owner
Shikun Liu
Ph.D. Student, The Dyson Robotics Lab at Imperial College.
Shikun Liu
disentanglement_lib is an open-source library for research on learning disentangled representations.

disentanglement_lib disentanglement_lib is an open-source library for research on learning disentangled representation. It supports a variety of diffe

Google Research 1.3k Dec 28, 2022
Neural Caption Generator with Attention

Neural Caption Generator with Attention Tensorflow implementation of "Show

Taeksoo Kim 510 Nov 30, 2022
Capture all information throughout your model's development in a reproducible way and tie results directly to the model code!

Rubicon Purpose Rubicon is a data science tool that captures and stores model training and execution information, like parameters and outcomes, in a r

Capital One 97 Jan 03, 2023
Official PyTorch implementation of BlobGAN: Spatially Disentangled Scene Representations

BlobGAN: Spatially Disentangled Scene Representations Official PyTorch Implementation Paper | Project Page | Video | Interactive Demo BlobGAN.mp4 This

148 Dec 29, 2022
PyTorch code for BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and Generation

BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and Generation

Salesforce 1.3k Dec 31, 2022
Updated for TTS(CE) = Also Known as TTN V3. The code requires the first server to be 'ttn' protocol.

Updated Updated for TTS(CE) = Also Known as TTN V3. The code requires the first server to be 'ttn' protocol. Introduction This balenaCloud (previously

Remko 1 Oct 17, 2021
DanceTrack: Multiple Object Tracking in Uniform Appearance and Diverse Motion

DanceTrack DanceTrack is a benchmark for tracking multiple objects in uniform appearance and diverse motion. DanceTrack provides box and identity anno

260 Dec 28, 2022
Koopman operator identification library in Python

pykoop pykoop is a Koopman operator identification library written in Python. It allows the user to specify Koopman lifting functions and regressors i

DECAR Systems Group 34 Jan 04, 2023
Code for paper Decoupled Dynamic Spatial-Temporal Graph Neural Network for Traffic Forecasting

Decoupled Spatial-Temporal Graph Neural Networks Code for our paper: Decoupled Dynamic Spatial-Temporal Graph Neural Network for Traffic Forecasting.

S22 43 Jan 04, 2023
Run PowerShell command without invoking powershell.exe

PowerLessShell PowerLessShell rely on MSBuild.exe to remotely execute PowerShell scripts and commands without spawning powershell.exe. You can also ex

Mr.Un1k0d3r 1.2k Jan 03, 2023
ProMP: Proximal Meta-Policy Search

ProMP: Proximal Meta-Policy Search Implementations corresponding to ProMP (Rothfuss et al., 2018). Overall this repository consists of two branches: m

Jonas Rothfuss 212 Dec 20, 2022
Camera Distortion-aware 3D Human Pose Estimation in Video with Optimization-based Meta-Learning

Camera Distortion-aware 3D Human Pose Estimation in Video with Optimization-based Meta-Learning This is the official repository of "Camera Distortion-

Hanbyel Cho 12 Oct 06, 2022
maximal update parametrization (µP)

Maximal Update Parametrization (μP) and Hyperparameter Transfer (μTransfer) Paper link | Blog link In Tensor Programs V: Tuning Large Neural Networks

Microsoft 694 Jan 03, 2023
PyTorch implementation of the end-to-end coreference resolution model with different higher-order inference methods.

End-to-End Coreference Resolution with Different Higher-Order Inference Methods This repository contains the implementation of the paper: Revealing th

Liyan 52 Jan 04, 2023
This repository contains the database and code used in the paper Embedding Arithmetic for Text-driven Image Transformation

This repository contains the database and code used in the paper Embedding Arithmetic for Text-driven Image Transformation (Guillaume Couairon, Holger

Meta Research 31 Oct 17, 2022
Point detection through multi-instance deep heatmap regression for sutures in endoscopy

Suture detection PyTorch This repo contains the reference implementation of suture detection model in PyTorch for the paper Point detection through mu

artificial intelligence in the area of cardiovascular healthcare 3 Jul 16, 2022
EGNN - Implementation of E(n)-Equivariant Graph Neural Networks, in Pytorch

EGNN - Pytorch Implementation of E(n)-Equivariant Graph Neural Networks, in Pytorch. May be eventually used for Alphafold2 replication. This

Phil Wang 259 Jan 04, 2023
Fast and robust certifiable relative pose estimation

Fast and Robust Relative Pose Estimation for Calibrated Cameras This repository contains the code for the relative pose estimation between two central

42 Dec 06, 2022
Lyapunov-guided Deep Reinforcement Learning for Stable Online Computation Offloading in Mobile-Edge Computing Networks

PyTorch code to reproduce LyDROO algorithm [1], which is an online computation offloading algorithm to maximize the network data processing capability subject to the long-term data queue stability an

Liang HUANG 87 Dec 28, 2022
PyTorch Implementation of VAENAR-TTS: Variational Auto-Encoder based Non-AutoRegressive Text-to-Speech Synthesis.

VAENAR-TTS - PyTorch Implementation PyTorch Implementation of VAENAR-TTS: Variational Auto-Encoder based Non-AutoRegressive Text-to-Speech Synthesis.

Keon Lee 67 Nov 14, 2022