Measures input lag without dedicated hardware, performing motion detection on recorded or live video

Overview

What is InputLagTimer?

This tool can measure input lag by analyzing a video where both the game controller and the game screen can be seen on a webcam or a video file.

Here's how it looks in action:

Usage demo

Even though the typical usage is game latency, InputLagTimer can measure any latency so long as it's captured on video. For example, if you point a camera at both your car key and its door lock, you can measure how fast that remote unlocks your car.

How does it measure input lag?

You first mark two rectangles in the video you provide:

  • 🟦 Input rectangle (blue): where the input motion happens. Such as a gamepad stick.
  • πŸŸͺ Output rectangle (purple): where the response will be visible. Such as the middle left of your TV screen, where the front wheels can be seen turning in your car simulator.

InputLagTimer will detect motion on the input area, and time how long it takes to detect motion on the output area.

Things should work for latencies of up to 700ms; if you need to measure slower events, the limit can be trivially edited in code.

How to use it:

  1. Download InputLagTimer (some windows binaries are available on github if you prefer that)
  2. Open InputLagTimer:
    • Plug your webcam then run the program.
    • Or drag-and-drop your video file to the program.
    • Or, from command line, type InputLagTimer 2 to open the 3rd webcam, or InputLagTimer file.mp4 to open a file.
  3. Press S then follow screen instructions to select the 🟦 input and πŸŸͺ output rectangles.
  4. Observe the input and output motion bars at the top, and press 1/2 and 3/4 to adjust the motion detection thresholds (white indicator). Latency timing will start when the input motion passes the threshold, and stop when the output motion does.

Note: a .cfg file will be created for each video, allowing to reproduce the same latency analysis.

Tips and gotchas

  • Use a tripod to hold the camera. The InputLagTimer is based on motion detection, therefore hand-held footage is doomed to spam false positives.
  • Disable gamepad vibration and put the gamepad in a table (unless you want to measure vibration-latency!): in other words,reduce unnecessary motion from both the input and output rectangles.
  • Select the 🟦 input and πŸŸͺ output rectangles as accurately as possible. E.g. to measure keyboard key travel time, draw an input rectangle including the entire key height. If you don't want to include key travel latency, draw the input rectangle as close to the key activation point as possible.
  • If using certain artificial lights, enable camera's anti-flicker feature when available (press C in InputLagTimer when using a webcam), or choose a recording framerate different than the powerline frequency used in your country (often 50Hz or 60Hz). This removes video flicker, vastly improving motion detection.
  • Prefer higher recording framerate, this provides finer-grained latency measurements:
    • Some phones and actioncams can reach hundreds of FPS.
    • Recording equipment may not reach its advertised framerate if it's not bright enough. If in doubt, add more lighting.
  • If your camera cannot reach the requested framerate (e.g. it only manages to capture 120FPS out of 240FPS, due to lack of light), consider recording directly at the reachable framerate. This eliminates the useless filler frames your camera was forced to duplicate, making it easier to tune the motion detection thresholds in InputLagTimer.
  • Prefer global shutter over rolling shutter cameras. Rolling shutter can slightly skew latency measurements, as one corner of the image is recorded earlier than the oposite corner.

Rolling Shutter example

(source: Axel1963 - CC BY-SA 3.0)

  • Screens normally refresh pixels from the top earlier than pixels from the bottom (or left before right, etc). The location of 🟦 input/ πŸŸͺ output rectangles in a screen can slightly skew latency measurements.
  • The pixels on a screen can take longer or shorter to update, depending on:
    • Pixel color. E.g. white-to-black response time might be longer than black-to-white.
    • Panel type. E.g. OLED will normally be much quicker than LCD panels.
    • Screen configuration. E.g. enabling 'overdrive', enabling 'game mode', etc.
  • Press A (Advanced mode) to see more keys and additional information.

Advanced Mode screenshot

Dependencies

To run the EXE, you don't need anythig else. So move along, nothing to see in this section :)

To run the python code directly, you'll need opencv for python, numpy, and whichever python interpreter you prefer.

To build the binary (with compile.py), you'll need PyInstaller.

Credits and licenses

InputLagTimer software:

Copyright 2021 Bruno Gonzalez Campo | [email protected] | @stenyak

Distributed under MIT license (see license.txt)

InputLagTimer icon:

Copyright 2021 Bruno Gonzalez Campo | [email protected] | @stenyak

Distributed under CC BY 3.0 license (see license_icon.txt)

Icon derived from:

You might also like...
Python scripts for performing object detection with the 1000 labels of the ImageNet dataset in ONNX.
Python scripts for performing object detection with the 1000 labels of the ImageNet dataset in ONNX.

Python scripts for performing object detection with the 1000 labels of the ImageNet dataset in ONNX. The repository combines a class agnostic object localizer to first detect the objects in the image, and next a ResNet50 model trained on ImageNet is used to label each box.

Python scripts for performing road segemtnation and car detection using the HybridNets multitask model in ONNX.
Python scripts for performing road segemtnation and car detection using the HybridNets multitask model in ONNX.

ONNX-HybridNets-Multitask-Road-Detection Python scripts for performing road segemtnation and car detection using the HybridNets multitask model in ONN

This project uses reinforcement learning on stock market and agent tries to learn trading. The goal is to check if the agent can learn to read tape. The project is dedicated to hero in life great Jesse Livermore.

Reinforcement-trading This project uses Reinforcement learning on stock market and agent tries to learn trading. The goal is to check if the agent can

NeuralCompression is a Python repository dedicated to research of neural networks that compress data

NeuralCompression is a Python repository dedicated to research of neural networks that compress data. The repository includes tools such as JAX-based entropy coders, image compression models, video compression models, and metrics for image and video evaluation.

SCAAML is a deep learning framwork dedicated to side-channel attacks run on top of TensorFlow 2.x.
SCAAML is a deep learning framwork dedicated to side-channel attacks run on top of TensorFlow 2.x.

SCAAML (Side Channel Attacks Assisted with Machine Learning) is a deep learning framwork dedicated to side-channel attacks. It is written in python and run on top of TensorFlow 2.x.

NeoPlay is the project dedicated to ESport events.

NeoPlay is the project dedicated to ESport events. On this platform users can participate in tournaments with prize pools as well as create their own tournaments.

This program was designed to detect whether someone is wearing a facemask through a live video stream.

This program was designed to detect whether someone is wearing a facemask through a live video stream. A custom lightweight CNN trained with TensorFlow on a public dataset provided by Kaggle is used to detect whether each face detected by the cv2 face detection dnn is wearing a mask

Video-Captioning - A machine Learning project to generate captions for video frames indicating the relationship between the objects in the video
Video-Captioning - A machine Learning project to generate captions for video frames indicating the relationship between the objects in the video

Video-Captioning - A machine Learning project to generate captions for video frames indicating the relationship between the objects in the video

Official implementation of the network presented in the paper
Official implementation of the network presented in the paper "M4Depth: A motion-based approach for monocular depth estimation on video sequences"

M4Depth This is the reference TensorFlow implementation for training and testing depth estimation models using the method described in M4Depth: A moti

Releases(v1.2)
  • v1.2(Mar 29, 2022)

    • Display summary of measured latencies: min/avg/max latencies and a histogram
    • Added display with the current framerate
    • Fixed incorrect timing when a webcam dropped below the advertised framerate
    • The 'a' key will now cycle between varying amounts of detail (more detail can lead to lower framerates)
    • Add CC license links on readme
    • Minor cleanups here and there

    Full Changelog: https://github.com/stenyak/inputLagTimer/compare/v1.1...v1.2

    Source code(tar.gz)
    Source code(zip)
    InputLagTimer.exe(50.81 MB)
  • v1.1(Jan 8, 2022)

    • Fix safety timeout kicking in too soon if using a custom maxLatency
    • Fix first webcam being ignored when running the program without arguments
    • Rename compiled file from camelCase to CamelCase

    Full Changelog: https://github.com/stenyak/inputLagTimer/compare/v1.0...v1.1

    Source code(tar.gz)
    Source code(zip)
    InputLagTimer.exe(49.22 MB)
  • v1.0(Jan 8, 2022)

PyTorch code to run synthetic experiments.

Code repository for Invariant Risk Minimization Source code for the paper: @article{InvariantRiskMinimization, title={Invariant Risk Minimization}

Facebook Research 345 Dec 12, 2022
Code of the paper "Deep Human Dynamics Prior" in ACM MM 2021.

Code of the paper "Deep Human Dynamics Prior" in ACM MM 2021. Figure 1: In the process of motion capture (mocap), some joints or even the whole human

Shinny cui 3 Oct 31, 2022
Official PyTorch implementation of Retrieve in Style: Unsupervised Facial Feature Transfer and Retrieval.

Retrieve in Style: Unsupervised Facial Feature Transfer and Retrieval PyTorch This is the PyTorch implementation of Retrieve in Style: Unsupervised Fa

60 Oct 12, 2022
A script helps the user to update Linux and Mac systems through the terminal

Description This script helps the user to update Linux and Mac systems through the terminal. All the user has to install some requirements and then ru

Roxcoder 2 Jan 23, 2022
YolactEdge: Real-time Instance Segmentation on the Edge

YolactEdge, the first competitive instance segmentation approach that runs on small edge devices at real-time speeds. Specifically, YolactEdge runs at up to 30.8 FPS on a Jetson AGX Xavier (and 172.7

Haotian Liu 1.1k Jan 06, 2023
A framework for GPU based high-performance medical image processing and visualization

FAST is an open-source cross-platform framework with the main goal of making it easier to do high-performance processing and visualization of medical images on heterogeneous systems utilizing both mu

Erik Smistad 315 Dec 30, 2022
Demo project for real time anomaly detection using kafka and python

kafkaml-anomaly-detection Project for real time anomaly detection using kafka and python It's assumed that zookeeper and kafka are running in the loca

Rodrigo Arenas 36 Dec 12, 2022
Single/multi view image(s) to voxel reconstruction using a recurrent neural network

3D-R2N2: 3D Recurrent Reconstruction Neural Network This repository contains the source codes for the paper Choy et al., 3D-R2N2: A Unified Approach f

Chris Choy 1.2k Dec 27, 2022
A PyTorch version of You Only Look at One-level Feature object detector

PyTorch_YOLOF A PyTorch version of You Only Look at One-level Feature object detector. The input image must be resized to have their shorter side bein

Jianhua Yang 25 Dec 30, 2022
PyTorch implementations of deep reinforcement learning algorithms and environments

Deep Reinforcement Learning Algorithms with PyTorch This repository contains PyTorch implementations of deep reinforcement learning algorithms and env

Petros Christodoulou 4.7k Jan 04, 2023
Feedback is important: response-aware feedback mechanism for background based conversation

RFM The code for the paper: "Feedback is important: response-aware feedback mechanism for background based conversation." Requirements python 3.7 pyto

Jiatao Chen 2 Sep 29, 2022
A tensorflow/keras implementation of StyleGAN to generate images of new Pokemon.

PokeGAN A tensorflow/keras implementation of StyleGAN to generate images of new Pokemon. Dataset The model has been trained on dataset that includes 8

19 Jul 26, 2022
McGill Physics Hackathon 2021: Reaction-Diffusion Models for the Generation of Biological Patterns

DiffuseAnimals: Reaction-Diffusion Models for the Generation of Biological Patterns Introduction Reaction-diffusion equations can be utilized in order

Austin Szuminsky 2 Mar 07, 2022
Tutorials, assignments, and competitions for MIT Deep Learning related courses.

MIT Deep Learning This repository is a collection of tutorials for MIT Deep Learning courses. More added as courses progress. Tutorial: Deep Learning

Lex Fridman 9.5k Jan 07, 2023
Code for EMNLP 2021 paper: "Learning Implicit Sentiment in Aspect-based Sentiment Analysis with Supervised Contrastive Pre-Training"

SCAPT-ABSA Code for EMNLP2021 paper: "Learning Implicit Sentiment in Aspect-based Sentiment Analysis with Supervised Contrastive Pre-Training" Overvie

Zhengyan Li 66 Dec 04, 2022
Time-Optimal Planning for Quadrotor Waypoint Flight

Time-Optimal Planning for Quadrotor Waypoint Flight This is an example implementation of the paper "Time-Optimal Planning for Quadrotor Waypoint Fligh

Robotics and Perception Group 38 Dec 02, 2022
Training vision models with full-batch gradient descent and regularization

Stochastic Training is Not Necessary for Generalization -- Training competitive vision models without stochasticity This repository implements trainin

Jonas Geiping 32 Jan 06, 2023
Unofficial implementation of the ImageNet, CIFAR 10 and SVHN Augmentation Policies learned by AutoAugment using pillow

AutoAugment - Learning Augmentation Policies from Data Unofficial implementation of the ImageNet, CIFAR10 and SVHN Augmentation Policies learned by Au

Philip Popien 1.3k Jan 02, 2023
Deep Reinforcement Learning based Trading Agent for Bitcoin

Deep Trading Agent Deep Reinforcement Learning based Trading Agent for Bitcoin using DeepSense Network for Q function approximation. For complete deta

Kartikay Garg 669 Dec 29, 2022
Face Mask Detection on Image and Video using tensorflow and keras

Face-Mask-Detection Face Mask Detection on Image and Video using tensorflow and keras Train Neural Network on face-mask dataset using tensorflow and k

Nahid Ebrahimian 12 Nov 11, 2022