Graph parsing approach to structured sentiment analysis.

Overview

Fine-grained Sentiment Analysis as Dependency Graph Parsing

This repository contains the code and datasets described in following paper: Fine-grained Sentiment Analysis as Dependency Graph Parsing.

Problem description

Fine-grained sentiment analysis can be theoretically cast as an information extraction problem in which one attempts to find all of the opinion tuples $O = O_i,\ldots,O_n$ in a text. Each opinion $O_i$ is a tuple $(h, t, e, p)$

where $h$ is a \textbf {holder} who expresses a \textbf{polarity} $p$ towards a \textbf{target} $t$ through a \textbf{sentiment expression} $e$, implicitly defining the relationships between these elements.

The two examples below (first in English, then in Basque) show the conception of sentiment graphs.

multilingual example

Rather than treating this as a sequence-labeling task, we can treat it as a bilexical dependency graph prediction task, although some decisions must me made. We create two versions (a) head-first and (b) head-final, shown below:

bilexical

Requirements

  1. python3
  2. pytorch
  3. matplotlib
  4. sklearn
  5. gensim
  6. numpy
  7. h5py
  8. transformers
  9. tqdm

Data collection and preprocessing

We provide the preprocessed bilexical sentiment graph data as conllu files in 'data/sent_graphs'. If you want to run the experiments, you can use this data directly. If, however, you are interested in how we create the data, you can use the following steps.

The first step is to download and preprocess the data, and then create the sentiment dependency graphs. The original data can be downloaded and converted to json files using the scripts found at https://github.com/jerbarnes/finegrained_data. After creating the json files for the finegrained datasets following the instructions, you can then place the directories (renamed to 'mpqa', 'ds_unis', 'norec_fine', 'eu', 'ca') in the 'data' directory.

After that, you can use the available scripts to create the bilexical dependency graphs, as mentioned in the paper.

cd data
./create_english_sent_graphs.sh
./create_euca_sent_graphs.sh
./create_norec_sent_graphs
cd ..

Experimental results

To reproduce the results, first you will need to download the word vectors used:

mkdir vectors
cd vectors
wget http://vectors.nlpl.eu/repository/20/58.zip
wget http://vectors.nlpl.eu/repository/20/32.zip
wget http://vectors.nlpl.eu/repository/20/34.zip
wget http://vectors.nlpl.eu/repository/20/18.zip
cd ..

You will similarly need to extract mBERT token representations for all datasets.

./do_bert.sh

Finally, you can run the SLURM scripts to reproduce the experimental results.

./scripts/run_base.sh
./scripts/run_bert.sh
Owner
Jeremy Barnes
I'm a professor of Natural Language Processing. My interests are in multi-linguality and incorporating diverse sources of information into neural networks.
Jeremy Barnes
Learning an Adaptive Meta Model-Generator for Incrementally Updating Recommender Systems

Learning an Adaptive Meta Model-Generator for Incrementally Updating Recommender Systems This is our experimental code for RecSys 2021 paper "Learning

11 Jul 28, 2022
This project provides the code and datasets for 'CapSal: Leveraging Captioning to Boost Semantics for Salient Object Detection', CVPR 2019.

Code-and-Dataset-for-CapSal This project provides the code and datasets for 'CapSal: Leveraging Captioning to Boost Semantics for Salient Object Detec

lu zhang 48 Aug 19, 2022
The project page of paper: Architecture disentanglement for deep neural networks [ICCV 2021, oral]

This is the project page for the paper: Architecture Disentanglement for Deep Neural Networks, Jie Hu, Liujuan Cao, Tong Tong, Ye Qixiang, ShengChuan

Jie Hu 15 Aug 30, 2022
ChineseBERT: Chinese Pretraining Enhanced by Glyph and Pinyin Information

ChineseBERT: Chinese Pretraining Enhanced by Glyph and Pinyin Information This repository contains code, model, dataset for ChineseBERT at ACL2021. Ch

413 Dec 01, 2022
Machine Learning Framework for Operating Systems - Brings ML to Linux kernel

KML: A Machine Learning Framework for Operating Systems & Storage Systems Storage systems and their OS components are designed to accommodate a wide v

File systems and Storage Lab (FSL) 186 Nov 24, 2022
Pytorch Implementation for (STANet+ and STANet)

Pytorch Implementation for (STANet+ and STANet) V2-Weakly Supervised Visual-Auditory Saliency Detection with Multigranularity Perception (arxiv), pdf:

GuotaoWang 14 Nov 29, 2022
Unified Pre-training for Self-Supervised Learning and Supervised Learning for ASR

UniSpeech The family of UniSpeech: UniSpeech (ICML 2021): Unified Pre-training for Self-Supervised Learning and Supervised Learning for ASR UniSpeech-

Microsoft 282 Jan 09, 2023
This package proposes simplified exporting pytorch models to ONNX and TensorRT, and also gives some base interface for model inference.

PyTorch Infer Utils This package proposes simplified exporting pytorch models to ONNX and TensorRT, and also gives some base interface for model infer

Alex Gorodnitskiy 11 Mar 20, 2022
Decorators for maximizing memory utilization with PyTorch & CUDA

torch-max-mem This package provides decorators for memory utilization maximization with PyTorch and CUDA by starting with a maximum parameter size and

Max Berrendorf 10 May 02, 2022
《Image2Reverb: Cross-Modal Reverb Impulse Response Synthesis》(2021)

Image2Reverb Image2Reverb is an end-to-end neural network that generates plausible audio impulse responses from single images of acoustic environments

Nikhil Singh 48 Nov 27, 2022
Public Implementation of ChIRo from "Learning 3D Representations of Molecular Chirality with Invariance to Bond Rotations"

Learning 3D Representations of Molecular Chirality with Invariance to Bond Rotations This directory contains the model architectures and experimental

35 Dec 05, 2022
Weighing Counts: Sequential Crowd Counting by Reinforcement Learning

LibraNet This repository includes the official implementation of LibraNet for crowd counting, presented in our paper: Weighing Counts: Sequential Crow

Hao Lu 18 Nov 05, 2022
SMD-Nets: Stereo Mixture Density Networks

SMD-Nets: Stereo Mixture Density Networks This repository contains a Pytorch implementation of "SMD-Nets: Stereo Mixture Density Networks" (CVPR 2021)

Fabio Tosi 115 Dec 26, 2022
OntoProtein: Protein Pretraining With Ontology Embedding

OntoProtein This is the implement of the paper "OntoProtein: Protein Pretraining With Ontology Embedding". OntoProtein is an effective method that mak

ZJUNLP 80 Dec 14, 2022
Inflated i3d network with inception backbone, weights transfered from tensorflow

I3D models transfered from Tensorflow to PyTorch This repo contains several scripts that allow to transfer the weights from the tensorflow implementat

Yana 479 Dec 08, 2022
[NeurIPS 2021] Official implementation of paper "Learning to Simulate Self-driven Particles System with Coordinated Policy Optimization".

Code for Coordinated Policy Optimization Webpage | Code | Paper | Talk (English) | Talk (Chinese) Hi there! This is the source code of the paper “Lear

DeciForce: Crossroads of Machine Perception and Autonomy 81 Dec 19, 2022
NL-Augmenter 🦎 → 🐍 A Collaborative Repository of Natural Language Transformations

NL-Augmenter 🦎 → 🐍 The NL-Augmenter is a collaborative effort intended to add transformations of datasets dealing with natural language. Transformat

684 Jan 09, 2023
GCC: Graph Contrastive Coding for Graph Neural Network Pre-Training @ KDD 2020

GCC: Graph Contrastive Coding for Graph Neural Network Pre-Training Original implementation for paper GCC: Graph Contrastive Coding for Graph Neural N

THUDM 274 Dec 27, 2022
An implementation of the Contrast Predictive Coding (CPC) method to train audio features in an unsupervised fashion.

CPC_audio This code implements the Contrast Predictive Coding algorithm on audio data, as described in the paper Unsupervised Pretraining Transfers we

8 Nov 14, 2022
A PyTorch implementation of Multi-digit Number Recognition from Street View Imagery using Deep Convolutional Neural Networks

SVHNClassifier-PyTorch A PyTorch implementation of Multi-digit Number Recognition from Street View Imagery using Deep Convolutional Neural Networks If

Potter Hsu 182 Jan 03, 2023