SparseInst: Sparse Instance Activation for Real-Time Instance Segmentation, CVPR 2022

Overview

SparseInst ๐Ÿš€

A simple framework for real-time instance segmentation, CVPR 2022
by
Tianheng Cheng, Xinggang Wangโ€ , Shaoyu Chen, Wenqiang Zhang, Qian Zhang, Chang Huang, Zhaoxiang Zhang, Wenyu Liu
(โ€ : corresponding author)

Highlights



PWC

  • SparseInst presents a new object representation method, i.e., Instance Activation Maps (IAM), to adaptively highlight informative regions of objects for recognition.
  • SparseInst is a simple, efficient, and fully convolutional framework without non-maximum suppression (NMS) or sorting, and easy to deploy!
  • SparseInst achieves good trade-off between speed and accuracy, e.g., 37.9 AP and 40 FPS with 608x input.

Updates

This project is under active development, please stay tuned! โ˜•

  • [2022-4-29]: We fix the common issue about the visualization demo.py, e.g., ValueError: GenericMask cannot handle ....

  • [2022-4-7]: We provide the demo code for visualization and inference on images. Besides, we have added more backbones for SparseInst, including ResNet-101, CSPDarkNet, and PvTv2. We are still supporting more backbones.

  • [2022-3-25]: We have released the code and models for SparseInst!

Overview

SparseInst is a conceptually novel, efficient, and fully convolutional framework for real-time instance segmentation. In contrast to region boxes or anchors (centers), SparseInst adopts a sparse set of instance activation maps as object representation, to highlight informative regions for each foreground objects. Then it obtains the instance-level features by aggregating features according to the highlighted regions for recognition and segmentation. The bipartite matching compels the instance activation maps to predict objects in a one-to-one style, thus avoiding non-maximum suppression (NMS) in post-processing. Owing to the simple yet effective designs with instance activation maps, SparseInst has extremely fast inference speed and achieves 40 FPS and 37.9 AP on COCO (NVIDIA 2080Ti), significantly outperforms the counter parts in terms of speed and accuracy.

Models

We provide two versions of SparseInst, i.e., the basic IAM (3x3 convolution) and the Group IAM (G-IAM for short), with different backbones. All models are trained on MS-COCO train2017.

Fast models

model backbone input aug APval AP FPS weights
SparseInst R-50 640 โœ˜ 32.8 33.2 44.3 model
SparseInst R-50-vd 640 โœ˜ 34.1 34.5 42.6 model
SparseInst (G-IAM) R-50 608 โœ˜ 33.4 34.0 44.6 model
SparseInst (G-IAM) R-50 608 โœ“ 34.2 34.7 44.6 model
SparseInst (G-IAM) R-50-DCN 608 โœ“ 36.4 36.8 41.6 model
SparseInst (G-IAM) R-50-vd 608 โœ“ 35.6 36.1 42.8 model
SparseInst (G-IAM) R-50-vd-DCN 608 โœ“ 37.4 37.9 40.0 model
SparseInst (G-IAM) R-50-vd-DCN 640 โœ“ 37.7 38.1 39.3 model

Larger models

model backbone input aug APval AP FPS weights
SparseInst (G-IAM) R-101 640 โœ˜ 34.9 35.5 - model
SparseInst (G-IAM) R-101-DCN 640 โœ˜ 36.4 36.9 - model

SparseInst with Vision Transformers

model backbone input aug APval AP FPS weights
SparseInst (G-IAM) PVTv2-B1 640 โœ˜ 35.3 36.0 33.5 (48.9โ†ก) model
SparseInst (G-IAM) PVTv2-B2-li 640 โœ˜ 37.2 38.2 26.5 model

โ†ก: measured on RTX 3090.

Note:

  • We will continue adding more models including more efficient convolutional networks, vision transformers, and larger models for high performance and high speed, please stay tuned ๐Ÿ˜ !
  • Inference speeds are measured on one NVIDIA 2080Ti unless specified.
  • We haven't adopt TensorRT or other tools to accelerate the inference of SparseInst. However, we are working on it now and will provide support for ONNX, TensorRT, MindSpore, Blade, and other frameworks as soon as possible!
  • AP denotes AP evaluated on MS-COCO test-dev2017
  • input denotes the shorter side of the input, e.g., 512x864 and 608x864, we keep the aspect ratio of the input and the longer side is no more than 864.
  • The inference speed might slightly change on different machines (2080 Ti) and different versions of detectron (we mainly use v0.3). If the change is sharp, e.g., > 5ms, please feel free to contact us.
  • For aug (augmentation), we only adopt the simple random crop (crop size: [384, 600]) provided by detectron2.
  • We adopt weight decay=5e-2 as default setting, which is slightly different from the original paper.
  • [Weights on BaiduPan]: we also provide trained models on BaiduPan: ShareLink (password: lkdo).

Installation and Prerequisites

This project is built upon the excellent framework detectron2, and you should install detectron2 first, please check official installation guide for more details.

Note: we mainly use v0.3 of detectron2 for experiments and evaluations. Besides, we also test our code on the newest version v0.6. If you find some bugs or incompatibility problems of higher version of detectron2, please feel free to raise a issue!

Install the detectron2:

git clone https://github.com/facebookresearch/detectron2.git
# if you swith to a specific version, e.g., v0.3 (recommended)
git checkout tags/v0.3
# build detectron2
python setup.py build develop

Getting Start

Testing SparseInst

Before testing, you should specify the config file <CONFIG> and the model weights <MODEL-PATH>. In addition, you can change the input size by setting the INPUT.MIN_SIZE_TEST in both config file or commandline.

  • [Performance Evaluation] To obtain the evaluation results, e.g., mask AP on COCO, you can run:
python train_net.py --config-file <CONFIG> --num-gpus <GPUS> --eval MODEL.WEIGHTS <MODEL-PATH>
# example:
python train_net.py --config-file configs/sparse_inst_r50_giam.yaml --num-gpus 8 --eval MODEL.WEIGHTS sparse_inst_r50_giam_aug_2b7d68.pth
  • [Inference Speed] To obtain the inference speed (FPS) on one GPU device, you can run:
python test_net.py --config-file <CONFIG> MODEL.WEIGHTS <MODEL-PATH> INPUT.MIN_SIZE_TEST 512
# example:
python test_net.py --config-file configs/sparse_inst_r50_giam.yaml MODEL.WEIGHTS sparse_inst_r50_giam_aug_2b7d68.pth INPUT.MIN_SIZE_TEST 512

Note:

  • The test_net.py only supports 1 GPU and 1 image per batch for measuring inference speed.
  • The inference time consists of the pure forward time and the post-processing time. While the evaluation processing, data loading, and pre-processing for wrappers (e.g., ImageList) are not included.
  • COCOMaskEvaluator is modified from COCOEvaluator for evaluating mask-only results.

Visualizing Images with SparseInst

To inference or visualize the segmentation results on your images, you can run:

python demo.py --config-file <CONFIG> --input <IMAGE-PATH> --output results --opts MODEL.WEIGHTS <MODEL-PATH>
# example
python demo.py --config-file configs/sparse_inst_r50_giam.yaml --input datasets/coco/val2017/* --output results --opt MODEL.WEIGHTS sparse_inst_r50_giam_aug_2b7d68.pth INPUT.MIN_SIZE_TEST 512
  • Besides, the demo.py also supports inference on video (--video-input), camera (--webcam). For inference on video, you might refer to issue #9 to avoid someerrors.
  • --opts supports modifications to the config-file, e.g., INPUT.MIN_SIZE_TEST 512.
  • --input can be single image or a folder of images, e.g., xxx/*.
  • If --output is not specified, a popup window will show the visualization results for each image.
  • Lowering the confidence-threshold will show more instances but with more false positives.

Visualization results (SparseInst-R50-GIAM)

Training SparseInst

To train the SparseInst model on COCO dataset with 8 GPUs. 8 GPUs are required for the training. If you only have 4 GPUs or GPU memory is limited, it doesn't matter and you can reduce the batch size through SOLVER.IMS_PER_BATCH or reduce the input size. If you adjust the batch size, learning schedule should be adjusted according to the linear scaling rule.

python train_net.py --config-file <CONFIG> --num-gpus 8 
# example
python train_net.py --config-file configs/sparse_inst_r50vd_dcn_giam_aug.yaml --num-gpus 8

Acknowledgements

SparseInst is based on detectron2, OneNet, DETR, and timm, and we sincerely thanks for their code and contribution to the community!

Citing SparseInst

If you find SparseInst is useful in your research or applications, please consider giving us a star ๐ŸŒŸ and citing SparseInst by the following BibTeX entry.

@inproceedings{Cheng2022SparseInst,
  title     =   {Sparse Instance Activation for Real-Time Instance Segmentation},
  author    =   {Cheng, Tianheng and Wang, Xinggang and Chen, Shaoyu and Zhang, Wenqiang and Zhang, Qian and Huang, Chang and Zhang, Zhaoxiang and Liu, Wenyu},
  booktitle =   {Proc. IEEE Conf. Computer Vision and Pattern Recognition (CVPR)},
  year      =   {2022}
}

License

SparseInst is released under the MIT Licence.

Owner
Hust Visual Learning Team
Hust Visual Learning Team belongs to the Artificial Intelligence Research Institute in the School of EIC in HUST, Lead by @xinggangw
Hust Visual Learning Team
The official code for paper "R2D2: Recursive Transformer based on Differentiable Tree for Interpretable Hierarchical Language Modeling".

R2D2 This is the official code for paper titled "R2D2: Recursive Transformer based on Differentiable Tree for Interpretable Hierarchical Language Mode

Alipay 49 Dec 17, 2022
Learning to Prompt for Continual Learning

Learning to Prompt for Continual Learning (L2P) Official Jax Implementation L2P is a novel continual learning technique which learns to dynamically pr

Google Research 207 Jan 06, 2023
Implementation of ConvMixer-Patches Are All You Need? in TensorFlow and Keras

Patches Are All You Need? - ConvMixer ConvMixer, an extremely simple model that is similar in spirit to the ViT and the even-more-basic MLP-Mixer in t

Sayan Nath 8 Oct 03, 2022
AI Based Smart Exam Proctoring Package

AI Based Smart Exam Proctoring Package It takes image (base64) as input: Provide Output as: Detection of Mobile phone. Detection of More than 1 person

NARENDER KESWANI 3 Sep 09, 2022
Official repository for CVPR21 paper "Deep Stable Learning for Out-Of-Distribution Generalization".

StableNet StableNet is a deep stable learning method for out-of-distribution generalization. This is the official repo for CVPR21 paper "Deep Stable L

120 Dec 28, 2022
๐Ÿ•น๏ธ Official Implementation of Conditional Motion In-betweening (CMIB) ๐Ÿƒ

Conditional Motion In-Betweening (CMIB) Official implementation of paper: Conditional Motion In-betweeening. Paper(arXiv) | Project Page | YouTube in-

Jihoon Kim 81 Dec 22, 2022
An example of time series augmentation methods with Keras

Time Series Augmentation This is a collection of time series data augmentation methods and an example use using Keras. News 2020/04/16: Repository Cre

ไนๅทžๅคงๅญฆ ใƒ’ใƒฅใƒผใƒžใƒณใ‚คใƒณใ‚ฟใƒ•ใ‚งใƒผใ‚น็ ”็ฉถๅฎค 229 Jan 02, 2023
Six - a Python 2 and 3 compatibility library

Six is a Python 2 and 3 compatibility library. It provides utility functions for smoothing over the differences between the Python versions with the g

Benjamin Peterson 919 Dec 28, 2022
Official implement of "CAT: Cross Attention in Vision Transformer".

CAT: Cross Attention in Vision Transformer This is official implement of "CAT: Cross Attention in Vision Transformer". Abstract Since Transformer has

100 Dec 15, 2022
Implementation for our ICCV2021 paper: Internal Video Inpainting by Implicit Long-range Propagation

Implicit Internal Video Inpainting Implementation for our ICCV2021 paper: Internal Video Inpainting by Implicit Long-range Propagation paper | project

202 Dec 30, 2022
Composable transformations of Python+NumPy programs: differentiate, vectorize, JIT to GPU/TPU, and more

JAX: Autograd and XLA Quickstart | Transformations | Install guide | Neural net libraries | Change logs | Reference docs | Code search News: JAX tops

Google 21.3k Jan 01, 2023
Zsseg.baseline - Zero-Shot Semantic Segmentation

This repo is for our paper A Simple Baseline for Zero-shot Semantic Segmentation

98 Dec 20, 2022
Pytorch implementation of the unsupervised object discovery method LOST.

LOST Pytorch implementation of the unsupervised object discovery method LOST. More details can be found in the paper: Localizing Objects with Self-Sup

Valeo.ai 189 Dec 25, 2022
Official repository of "Investigating Tradeoffs in Real-World Video Super-Resolution"

RealBasicVSR [Paper] This is the official repository of "Investigating Tradeoffs in Real-World Video Super-Resolution, arXiv". This repository contain

Kelvin C.K. Chan 566 Dec 28, 2022
Hyperopt for solving CIFAR-100 with a convolutional neural network (CNN) built with Keras and TensorFlow, GPU backend

Hyperopt for solving CIFAR-100 with a convolutional neural network (CNN) built with Keras and TensorFlow, GPU backend This project acts as both a tuto

Guillaume Chevalier 103 Jul 22, 2022
The implementation of the paper "HIST: A Graph-based Framework for Stock Trend Forecasting via Mining Concept-Oriented Shared Information".

The HIST framework for stock trend forecasting The implementation of the paper "HIST: A Graph-based Framework for Stock Trend Forecasting via Mining C

Wentao Xu 110 Dec 27, 2022
SemiNAS: Semi-Supervised Neural Architecture Search

SemiNAS: Semi-Supervised Neural Architecture Search This repository contains the code used for Semi-Supervised Neural Architecture Search, by Renqian

Renqian Luo 21 Aug 31, 2022
Code and datasets for TPAMI 2021

SkeletonNet This repository constains the codes and ShapeNetV1-Surface-Skeleton,ShapNetV1-SkeletalVolume and 2d image datasets ShapeNetRendering. Plea

34 Aug 15, 2022
An Unpaired Sketch-to-Photo Translation Model

Unpaired-Sketch-to-Photo-Translation We have released our code at https://github.com/rt219/Unsupervised-Sketch-to-Photo-Synthesis This project is the

38 Oct 28, 2022
Simple node deletion tool for onnx.

snd4onnx Simple node deletion tool for onnx. I only test very miscellaneous and limited patterns as a hobby. There are probably a large number of bugs

Katsuya Hyodo 6 May 15, 2022