This project uses reinforcement learning on stock market and agent tries to learn trading. The goal is to check if the agent can learn to read tape. The project is dedicated to hero in life great Jesse Livermore.

Overview

Reinforcement-trading

This project uses Reinforcement learning on stock market and agent tries to learn trading. The goal is to check if the agent can learn to read tape. The project is dedicated to hero in life great Jesse Livermore and one of the best human i know Ryan Booth https://github.com/ryanabooth.

One Point to note, the code inside tensor-reinforcement is the latest code and you should be reading/running if you are interested in project. Leave other directories, I am not working on them for now
. To read my thought journal during ongoing development https://github.com/deependersingla/deep_trader/blob/master/deep_thoughts.md

Before this I have used RL here: http://somedeepthoughtsblog.tumblr.com/post/134793589864/maths-versus-computation

Now I run a company on RL trading, so I can't answer questions related to the project.

Steps to reproduce DQN

a) cd tensor-reinforcement
b) Copy data from https://drive.google.com/file/d/0B6ZrYxEMNGR-MEd5Ti0tTEJjMTQ/view and https://drive.google.com/file/d/0B6ZrYxEMNGR-Q0YwWWVpVnJ3YmM/view?usp=sharing into tensor-reinforcement directory.
b) Create a directory saved_networks inside tensor_reinforcement for saving networks.
c) python dqn_model.py

Steps to reproduce PG

a) cd tensor-reinforcement
b) Create a directory saved_networks inside tensor_reinforcement for saving networks.
c) python pg_model.py

For the first iteration of the project

Process:
Intially I started by using Chainer for the project for both supervised and reinforcement learning. In middle of it AlphaGo (https://research.googleblog.com/2016/01/alphago-mastering-ancient-game-of-go.html) came because of it I shifted to read Sutton book on RL (https://webdocs.cs.ualberta.ca/~sutton/book/the-book.html), AlphaGo and related papers, David Silver lectures (http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html, they are great).

I am coming back to project after some time a lot has changed. All the cool kids even DeepMind (the gods) have started using TensorFlow. Hence, I am ditching Chainer and will use Tensorflow from now. Exciting times ahead.

Policy network

I will be starting with simple feed-forward network. Though, I am also inclined to use convolutional network reason, they do very well when the minor change in input should not change ouput. For example: In image recognizition, a small pixel values change doesn't meam image is changed. Intutively stocks numbers look same to me, a small change should not trigger a trade but again the problem here comes with normalization. With normalization the big change in number will be reduced to a very small in inputs hence its good to start with feed-forward.

Feed-forward

I want to start with 2 layer first, yes that just vanilla but lets see how it works than will shift to more deeper network. On output side I will be using a sigmoid non-linear function to get value out of 0 and 1. In hidden layer all neurons will be RELU. With 2 layers, I am assuming that first layer w1 can decide whether market is bullish, bearish and stable. 2nd layer can then decide what action to take based on based layer.

Training

I will run x episode of training and each will have y time interval on it. Policy network will have to make x*y times decision of whether to hold, buy or short. After this based on our reward I will label every decison whether it was good/bad and update network. I will again run x episode on the improved network and will keep doing it. Like MCTS where things average out to optimality our policy also will start making more positive decision and less negative decision even though in training we will see policy making some wrong choices but on average it will work out because we will do same thing million times.

Episodic

I plan to start with episodic training rather than continous training. The major reason for this is that I will not have to calculate reward after every action which agent will make which is complex to do in trading, I can just make terminal reward based on portfolio value after an entire episode (final value of portfolio - transaction cost occur inside the episode - initial value of portfolio). The other reason for doing it that I believe it will motivate agent to learn trading on episodes, which decreases risk of any outlier events or sentiment change in market.

This also means that I have to check the hypothesis on:
a) Episodes of different length
b) On different rewards terminal reward or rewards after each step inside an episode also.
As usual like every AI projects, there will be a lot of hit and trial. I should better write good code and store all results properly so that I can compare them to see what works and what don't. Ofcourse the idea is to make sure agent remain profitable while trading.

More info here https://docs.google.com/document/d/12TmodyT4vZBViEbWXkUIgRW_qmL1rTW00GxSMqYGNHU/edit

Data sources

  1. For directly running this repo, use this data source and you are all setup: https://drive.google.com/open?id=0B6ZrYxEMNGR-MEd5Ti0tTEJjMTQ
  2. Nifty Data: https://drive.google.com/folderview?id=0B8e3dtbFwQWUZ1I5dklCMmE5M2M&ddrp=1%20%E2%81%A0%E2%81%A0%E2%81%A0%E2%81%A09:05%20PM%E2%81%A0%E2%81%A0%E2%81%A0%E2%81%A0%E2%81%A0
  3. Nifty futures:http://www.4shared.com/folder/Fv9Jm0bS/NSE_Futures
  4. Google finance
  5. Interative Brokers, I used IB because I have an account with them.

For reading on getting data using IB https://www.interactivebrokers.com/en/software/api/apiguide/tables/historical_data_limitations.htm https://www.interactivebrokers.com/en/software/api/apiguide/java/historicaldata.htm symbol: stock -> STK, Indices -> IND

Reinforcement learning resources

https://github.com/aikorea/awesome-rl , this is enough if you are serious

Owner
Deepender Singla
Works at @niveshi. Before @accredible. Simple and nice guy.
Deepender Singla
Easy to use Audio Tagging in PyTorch

Audio Classification, Tagging & Sound Event Detection in PyTorch Progress: Fine-tune on audio classification Fine-tune on audio tagging Fine-tune on s

sithu3 15 Dec 22, 2022
Automatic Video Captioning Evaluation Metric --- EMScore

Automatic Video Captioning Evaluation Metric --- EMScore Overview For an illustration, EMScore can be computed as: Installation modify the encode_text

Yaya Shi 17 Nov 28, 2022
Image Super-Resolution Using Very Deep Residual Channel Attention Networks

Image Super-Resolution Using Very Deep Residual Channel Attention Networks

kongdebug 14 Oct 14, 2022
A Number Recognition algorithm

Paddle-VisualAttention Results_Compared SVHN Dataset Methods Steps GPU Batch Size Learning Rate Patience Decay Step Decay Rate Training Speed (FPS) Ac

1 Nov 12, 2021
Do Smart Glasses Dream of Sentimental Visions? Deep Emotionship Analysis for Eyewear Devices

EMOShip This repository contains the EMO-Film dataset described in the paper "Do Smart Glasses Dream of Sentimental Visions? Deep Emotionship Analysis

1 Nov 18, 2022
🍅🍅🍅YOLOv5-Lite: lighter, faster and easier to deploy. Evolved from yolov5 and the size of model is only 1.7M (int8) and 3.3M (fp16). It can reach 10+ FPS on the Raspberry Pi 4B when the input size is 320×320~

YOLOv5-Lite:lighter, faster and easier to deploy Perform a series of ablation experiments on yolov5 to make it lighter (smaller Flops, lower memory, a

pogg 1.5k Jan 05, 2023
Unofficial implementation of the ImageNet, CIFAR 10 and SVHN Augmentation Policies learned by AutoAugment using pillow

AutoAugment - Learning Augmentation Policies from Data Unofficial implementation of the ImageNet, CIFAR10 and SVHN Augmentation Policies learned by Au

Philip Popien 1.3k Jan 02, 2023
constructing maps of intellectual influence from publication data

Influencemap Project @ ANU Influence in the academic communities has been an area of interest for researchers. This can be seen in the popularity of a

CS Metrics 13 Jun 18, 2022
This repository contains code accompanying the paper "An End-to-End Chinese Text Normalization Model based on Rule-Guided Flat-Lattice Transformer"

FlatTN This repository contains code accompanying the paper "An End-to-End Chinese Text Normalization Model based on Rule-Guided Flat-Lattice Transfor

THUHCSI 74 Nov 28, 2022
Distributed DataLoader For Pytorch Based On Ray

Dpex——用户无感知分布式数据预处理组件 一、前言 随着GPU与CPU的算力差距越来越大以及模型训练时的预处理Pipeline变得越来越复杂,CPU部分的数据预处理已经逐渐成为了模型训练的瓶颈所在,这导致单机的GPU配置的提升并不能带来期望的线性加速。预处理性能瓶颈的本质在于每个GPU能够使用的C

Dalong 23 Nov 02, 2022
BEAMetrics: Benchmark to Evaluate Automatic Metrics in Natural Language Generation

BEAMetrics: Benchmark to Evaluate Automatic Metrics in Natural Language Generation Installing The Dependencies $ conda create --name beametrics python

7 Jul 04, 2022
PyMatting: A Python Library for Alpha Matting

Given an input image and a hand-drawn trimap (top row), alpha matting estimates the alpha channel of a foreground object which can then be composed onto a different background (bottom row).

PyMatting 1.4k Dec 30, 2022
Multi Task RL Baselines

MTRL Multi Task RL Algorithms Contents Introduction Setup Usage Documentation Contributing to MTRL Community Acknowledgements Introduction M

Facebook Research 171 Jan 09, 2023
Regulatory Instruments for Fair Personalized Pricing.

Fair pricing Source code for WWW 2022 paper Regulatory Instruments for Fair Personalized Pricing. Installation Requirements Linux with Python = 3.6 p

Renzhe Xu 6 Oct 26, 2022
Train Scene Graph Generation for Visual Genome and GQA in PyTorch >= 1.2 with improved zero and few-shot generalization.

Scene Graph Generation Object Detections Ground truth Scene Graph Generated Scene Graph In this visualization, woman sitting on rock is a zero-shot tr

Boris Knyazev 93 Dec 28, 2022
Zsseg.baseline - Zero-Shot Semantic Segmentation

This repo is for our paper A Simple Baseline for Zero-shot Semantic Segmentation

98 Dec 20, 2022
Lex Rosetta: Transfer of Predictive Models Across Languages, Jurisdictions, and Legal Domains

Lex Rosetta: Transfer of Predictive Models Across Languages, Jurisdictions, and Legal Domains This is an accompanying repository to the ICAIL 2021 pap

4 Dec 16, 2021
Code and data form the paper BERT Got a Date: Introducing Transformers to Temporal Tagging

BERT Got a Date: Introducing Transformers to Temporal Tagging Satya Almasian*, Dennis Aumiller*, and Michael Gertz Heidelberg University Contact us vi

54 Dec 04, 2022
Clockwork Variational Autoencoder

Clockwork Variational Autoencoders (CW-VAE) Vaibhav Saxena, Jimmy Ba, Danijar Hafner If you find this code useful, please reference in your paper: @ar

Vaibhav Saxena 35 Nov 06, 2022