Implementation of " SESS: Self-Ensembling Semi-Supervised 3D Object Detection" (CVPR2020 Oral)

Related tags

Deep Learningsess
Overview

SESS: Self-Ensembling Semi-Supervised 3D Object Detection

Created by Na Zhao from National University of Singapore

teaser

Introduction

This repository contains the PyTorch implementation for our CVPR 2020 Paper "SESS: Self-Ensembling Semi-Supervised 3D Object Detection" by Na Zhao, Tat Seng Chua, Gim Hee Lee [paper]

The performance of existing point cloud-based 3D object detection methods heavily relies on large-scale high-quality 3D annotations. However, such annotations are often tedious and expensive to collect. Semi-supervised learning is a good alternative to mitigate the data annotation issue, but has remained largely unexplored in 3D object detection. Inspired by the recent success of self-ensembling technique in semi-supervised image classification task, we propose SESS, a self-ensembling semi-supervised 3D object detection framework. Specifically, we design a thorough perturbation scheme to enhance generalization of the network on unlabeled and new unseen data. Furthermore, we propose three consistency losses to enforce the consistency between two sets of predicted 3D object proposals, to facilitate the learning of structure and semantic invariances of objects. Extensive experiments conducted on SUN RGB-D and ScanNet datasets demonstrate the effectiveness of SESS in both inductive and transductive semi-supervised 3D object detection. Our SESS achieves competitive performance compared to the state-of-the-art fully-supervised method by using only 50% labeled data.

Setup

  • Install python --This repo is tested with python 3.6.8.
  • Install pytorch with CUDA -- This repo is tested with torch 1.1, CUDA 9.0. It may wrk with newer versions, but that is not gauranteed.
  • Install tensorflow (for Tensorboard) -- This repo is tested with tensorflow 1.14.
  • Compile the CUDA layers for PointNet++, which is used in the backbone network:
    cd pointnet2
    python setup.py install
    
  • Install dependencies
    pip install -r requirements.txt
    

Usage

Data preparation

For SUNRGB-D, follow the README under sunrgbd folder.

For ScanNet, follow the README under scannet folder.

Running experiments

For SUNRGB-D, using the following command to train and evaluate:

python scripts/run_sess_sunrgbd.py

For ScanNet, using the following command to train and evaluate:

python scripts/run_sess_scannet.py

Note that we have included the pretaining phase, training phase, and two evaluation phases (inductive and transductive semi-supervised learning) as four functions in each script. You are free to uncomment any function execution line to skip the corresponding phase.

Citation

Please cite our paper if it is helpful to your research:

@inproceedings{zhao2020sess,
  title={SESS: Self-Ensembling Semi-Supervised 3D Object Detection},
  author={Zhao, Na and Chua, Tat-Seng and Lee, Gim Hee},
  booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
  pages={11079--11087},
  year={2020}
}

Acknowledgement

Our implementation leverages on the source code from the following repositories:

[CVPR 2021] Released code for Counterfactual Zero-Shot and Open-Set Visual Recognition

Counterfactual Zero-Shot and Open-Set Visual Recognition This project provides implementations for our CVPR 2021 paper Counterfactual Zero-S

144 Dec 24, 2022
李云龙二次元风格化!打滚卖萌,使用了animeGANv2进行了视频的风格迁移

李云龙二次元风格化!一键star、fork,你也可以生成这样的团长! 打滚卖萌求star求fork! 0.效果展示 视频效果前往B站观看效果最佳:李云龙二次元风格化: github开源repo:李云龙二次元风格化 百度AIstudio开源地址,一键fork即可运行: 李云龙二次元风格化!一键fork

oukohou 44 Dec 04, 2022
A GOOD REPRESENTATION DETECTS NOISY LABELS

A GOOD REPRESENTATION DETECTS NOISY LABELS This code is a PyTorch implementation of the paper: Prerequisites Python 3.6.9 PyTorch 1.7.1 Torchvision 0.

<a href=[email protected]"> 64 Jan 04, 2023
Tools for computational pathology

A toolkit for computational pathology and machine learning. View documentation Please cite our paper Installation There are several ways to install Pa

254 Dec 12, 2022
Code for Fold2Seq paper from ICML 2021

[ICML2021] Fold2Seq: A Joint Sequence(1D)-Fold(3D) Embedding-based Generative Model for Protein Design Environment file: environment.yml Data and Feat

International Business Machines 43 Dec 04, 2022
SiT: Self-supervised vIsion Transformer

This repository contains the official PyTorch self-supervised pretraining, finetuning, and evaluation codes for SiT (Self-supervised image Transformer).

Sara Ahmed 275 Dec 28, 2022
A Fast and Accurate One-Stage Approach to Visual Grounding, ICCV 2019 (Oral)

One-Stage Visual Grounding ***** New: Our recent work on One-stage VG is available at ReSC.***** A Fast and Accurate One-Stage Approach to Visual Grou

Zhengyuan Yang 118 Dec 05, 2022
An end-to-end machine learning library to directly optimize AUC loss

LibAUC An end-to-end machine learning library for AUC optimization. Why LibAUC? Deep AUC Maximization (DAM) is a paradigm for learning a deep neural n

Andrew 75 Dec 12, 2022
Single Image Super-Resolution (SISR) with SRResNet, EDSR and SRGAN

Single Image Super-Resolution (SISR) with SRResNet, EDSR and SRGAN Introduction Image super-resolution (SR) is the process of recovering high-resoluti

8 Apr 15, 2022
The repository is for safe reinforcement learning baselines.

Safe-Reinforcement-Learning-Baseline The repository is for Safe Reinforcement Learning (RL) research, in which we investigate various safe RL baseline

172 Dec 19, 2022
The source code of the ICCV2021 paper "PIRenderer: Controllable Portrait Image Generation via Semantic Neural Rendering"

The source code of the ICCV2021 paper "PIRenderer: Controllable Portrait Image Generation via Semantic Neural Rendering"

Ren Yurui 261 Jan 09, 2023
Framework web SnakeServer.

SnakeServer - Framework Web 🐍 Documentação oficial do framework SnakeServer. Conteúdo Sobre Como contribuir Enviar relatórios de segurança Pull reque

Jaedson Silva 0 Jul 21, 2022
Python3 Implementation of (Subspace Constrained) Mean Shift Algorithm in Euclidean and Directional Product Spaces

(Subspace Constrained) Mean Shift Algorithms in Euclidean and/or Directional Product Spaces This repository contains Python3 code for the mean shift a

Yikun Zhang 0 Oct 19, 2021
Pytorch implementation of set transformer

set_transformer Official PyTorch implementation of the paper Set Transformer: A Framework for Attention-based Permutation-Invariant Neural Networks .

Juho Lee 410 Jan 06, 2023
MGFN: Multi-Graph Fusion Networks for Urban Region Embedding was accepted by IJCAI-2022.

Multi-Graph Fusion Networks for Urban Region Embedding (IJCAI-22) This is the implementation of Multi-Graph Fusion Networks for Urban Region Embedding

202 Nov 18, 2022
A certifiable defense against adversarial examples by training neural networks to be provably robust

DiffAI v3 DiffAI is a system for training neural networks to be provably robust and for proving that they are robust. The system was developed for the

SRI Lab, ETH Zurich 202 Dec 13, 2022
GeoMol: Torsional Geometric Generation of Molecular 3D Conformer Ensembles

GeoMol: Torsional Geometric Generation of Molecular 3D Conformer Ensembles This repository contains a method to generate 3D conformer ensembles direct

127 Dec 20, 2022
Y. Zhang, Q. Yao, W. Dai, L. Chen. AutoSF: Searching Scoring Functions for Knowledge Graph Embedding. IEEE International Conference on Data Engineering (ICDE). 2020

AutoSF The code for our paper "AutoSF: Searching Scoring Functions for Knowledge Graph Embedding" and this paper has been accepted by ICDE2020. News:

AutoML Research 64 Dec 17, 2022
3D Avatar Lip Syncronization from speech (JALI based face-rigging)

visemenet-inference Inference Demo of "VisemeNet-tensorflow" VisemeNet is an audio-driven animator centric speech animation driving a JALI or standard

Junhwan Jang 17 Dec 20, 2022
Implementation of ProteinBERT in Pytorch

ProteinBERT - Pytorch (wip) Implementation of ProteinBERT in Pytorch. Original Repository Install $ pip install protein-bert-pytorch Usage import torc

Phil Wang 92 Dec 25, 2022