Wikipedia-Utils: Preprocessing Wikipedia Texts for NLP

Overview

Wikipedia-Utils: Preprocessing Wikipedia Texts for NLP

This repository maintains some utility scripts for retrieving and preprocessing Wikipedia text for natural language processing (NLP) research.

Note: The scripts have been created for and tested with the Japanese version of Wikipedia only.

Preprocessed files

Some of the preprocessed files generated by this repo's scripts can be downloaded from the Releases page.

All the preprocessed files are distributed under the CC-BY-SA 3.0 and GFDL licenses. For more information, see the License section below.

Example usage of the scripts

Get Wikipedia page ids from a Cirrussearch dump file

get_all_page_ids_from_cirrussearch.py

This script extracts the page ids and revision ids of all pages from a Wikipedia Cirrussearch dump file (available from this site.) It also adds the following information to each item based on the information in the dump file:

  • "num_inlinks": the number of incoming links to the page.
  • "is_disambiguation_page": whether the page is a disambiguation page.
  • "is_sexual_page": whether the page is labeled containing sexual contents.
  • "is_violent_page": whether the page is labeled containing violent contents.
$ python get_all_page_ids_from_cirrussearch.py \
--cirrus_file ~/data/wikipedia/cirrussearch/20211129/jawiki-20211129-cirrussearch-content.json.gz \
--output_file ~/work/wikipedia-utils/20211129/page-ids-jawiki-20211129.json

# If you want the output file sorted by the page id:
$ cat ~/work/wikipedia-utils/20211129/page-ids-jawiki-20211129.json|jq -s -c 'sort_by(.pageid)[]' > ~/work/wikipedia-utils/20211129/page-ids-jawiki-20211129-sorted.json
$ mv ~/work/wikipedia-utils/20211129/page-ids-jawiki-20211129-sorted.json ~/work/wikipedia-utils/20211129/page-ids-jawiki-20211129.json

The script outputs a JSON Lines file containing following items, one item per line:

{
    "title": "アンパサンド",
    "pageid": 5,
    "revid": 85364431,
    "num_inlinks": 231,
    "is_disambiguation_page": false,
    "is_sexual_page": false,
    "is_violent_page": false
}

Get Wikipedia page HTMLs

get_page_htmls.py

This script fetches HTML contents of the Wikipedia pages specified by the page ids in the input file. It makes use of Wikimedia REST API to accsess the contents of Wikipedia pages.

Important: Be sure to check the terms and conditions of the API documented in the official page. Especially, you may not send more than 200 requests/sec to the API. You should also set your contact information (e.g., email address) in the User-Agent header so that Wikimedia can contact you quickly if necessary.

# It takes about 2 days to fetch all the articles in Japanese Wikipedia
$ python get_page_htmls.py \
--page_ids_file ~/work/wikipedia-utils/20211129/page-ids-jawiki-20211129.json \
--output_file ~/work/wikipedia-utils/20211129/page-htmls-jawiki-20211129.json.gz \
--language ja \
--user_agent <your_contact_information> \
--batch_size 20 \
--mobile

# If you want the output file sorted by the page id:
$ zcat ~/work/wikipedia-utils/20211129/page-htmls-jawiki-20211129.json.gz|jq -s -c 'sort_by(.pageid)[]'|gzip > ~/work/wikipedia-utils/20211129/page-htmls-jawiki-20211129-sorted.json.gz
$ mv ~/work/wikipedia-utils/20211129/page-htmls-jawiki-20211129-sorted.json.gz ~/work/wikipedia-utils/20211129/page-htmls-jawiki-20211129.json.gz

# Splitting the file for distribution
$ gunzip ~/work/wikipedia-utils/20211129/page-htmls-jawiki-20211129.json.gz
$ split -n l/5 --numeric-suffixes=1 --additional-suffix=.json ~/work/wikipedia-utils/20211129/page-htmls-jawiki-20211129.json ~/work/wikipedia-utils/20211129/page-htmls-jawiki-20211129.
$ gzip ~/work/wikipedia-utils/20211129/page-htmls-jawiki-20211129.*.json
$ gzip ~/work/wikipedia-utils/20211129/page-htmls-jawiki-20211129.json

The script outputs a gzipped JSON Lines file containing following items, one item per line:

{
  "title": "アンパサンド",
  "pageid": 5,
  "revid": 85364431,
  "url": "https://ja.wikipedia.org/api/rest_v1/page/mobile-html/%E3%82%A2%E3%83%B3%E3%83%91%E3%82%B5%E3%83%B3%E3%83%89/85364431",
  "html": "
}

Extract paragraphs from the Wikipedia page HTMLs

extract_paragraphs_from_page_htmls.py

This script extracts paragraph texts from a Wikipedia page HTMLs file generated by get_page_htmls.py. You can specify the minimum and maximum length of the paragraph texts to be extracted.

# This produces 8,921,367 paragraphs
$ python extract_paragraphs_from_page_htmls.py \
--page_htmls_file ~/work/wikipedia-utils/20211129/page-htmls-jawiki-20211129.json.gz \
--output_file ~/work/wikipedia-utils/20211129/paragraphs-jawiki-20211129.json.gz \
--min_paragraph_length 10 \
--max_paragraph_length 1000

Make a plain text corpus of Wikipedia paragraph/page texts

make_corpus_from_paragraphs.py

This script produces a plain text corpus file from a paragraphs file generated by extract_paragraphs_from_page_htmls.py. You can optionally filter out disambiguation/sexual/violent pages from the output file by specifying the corresponding command line options.

Here we use mecab-ipadic-NEologd in splitting texts into sentences so that some sort of named entities will not be split into sentences.

The output file is a gzipped text file containing one sentence per line, with the pages separated by blank lines.

# 22,651,544 lines from all pages
$ python make_corpus_from_paragraphs.py \
--paragraphs_file ~/work/wikipedia-utils/20211129/paragraphs-jawiki-20211129.json.gz \
--output_file ~/work/wikipedia-utils/20211129/corpus-jawiki-20211129.txt.gz \
--mecab_option '-d /usr/local/lib/mecab/dic/ipadic-neologd-v0.0.7' \
--min_sentence_length 10 \
--max_sentence_length 1000

# 18,721,087 lines from filtered pages
$ python make_corpus_from_paragraphs.py \
--paragraphs_file ~/work/wikipedia-utils/20211129/paragraphs-jawiki-20211129.json.gz \
--output_file ~/work/wikipedia-utils/20211129/corpus-jawiki-20211129-filtered-large.txt.gz \
--page_ids_file ~/work/wikipedia-utils/20211129/page-ids-jawiki-20211129.json \
--mecab_option '-d /usr/local/lib/mecab/dic/ipadic-neologd-v0.0.7' \
--min_sentence_length 10 \
--max_sentence_length 1000 \
--min_inlinks 10 \
--exclude_sexual_pages

make_corpus_from_cirrussearch.py

This script produces a plain text corpus file by simply taking the text attributes of pages from a Wikipedia Cirrussearch dump file.

The resulting corpus file will be somewhat different from the one generated by make_corpus_from_paragraphs.py due to some differences in text processing. In addition, since the text attributes in the Cirrussearch dump file does not retain the page structure, it is less flexible to modify the processing of text compared to processing an HTML file with make_corpus_from_paragraphs.py.

$ python make_corpus_from_cirrussearch.py \
--cirrus_file ~/data/wikipedia/cirrussearch/20211129/jawiki-20211129-cirrussearch-content.json.gz \
--output_file ~/work/wikipedia-utils/20211129/corpus-jawiki-20211129-cirrus.txt.gz \
--min_inlinks 10 \
--exclude_sexual_pages \
--mecab_option '-d /usr/local/lib/mecab/dic/ipadic-neologd-v0.0.7'

Make a passages file from extracted paragraphs

make_passages_from_paragraphs.py

This script takes a paragraphs file generated by extract_paragraphs_from_page_htmls.py and splits the paragraph texts into a collection of pieces of texts called passages (sections/paragraphs/sentences).

It is useful for creating texts of a reasonable length that can be handled by passage-retrieval systems such as DPR.

# Make single passage from one paragraph
# 8,672,661 passages
$ python make_passages_from_paragraphs.py \
--paragraphs_file ~/work/wikipedia-utils/20211129/paragraphs-jawiki-20211129.json.gz \
--output_file ~/work/wikipedia-utils/20211129/passages-para-jawiki-20211129.json.gz \
--passage_unit paragraph \
--passage_boundary section \
--max_passage_length 400

# Make single passage from consecutive sentences within a section
# 5,170,346 passages
$ python make_passages_from_paragraphs.py \
--paragraphs_file ~/work/wikipedia-utils/20211129/paragraphs-jawiki-20211129.json.gz \
--output_file ~/work/wikipedia-utils/20211129/passages-c400-jawiki-20211129.json.gz \
--passage_unit sentence \
--passage_boundary section \
--max_passage_length 400 \
--as_long_as_possible

Build Elasticsearch indices of Wikipedia passages/pages

Requirements

  • Elasticsearch 6.x with several plugins installed
# For running build_es_index_passages.py
$ ./bin/elasticsearch-plugin install analysis-kuromoji

# For running build_es_index_cirrussearch.py (Elasticsearch 6.5.4 is needed)
$ ./bin/elasticsearch-plugin install analysis-icu
$ ./bin/elasticsearch-plugin install org.wikimedia.search:extra:6.5.4

build_es_index_passages.py

This script builds an Elasticsearch index of passages generated by make_passages_from_paragraphs.

$ python build_es_index_passages.py \
--passages_file ~/work/wikipedia-utils/20211129/passages-para-jawiki-20211129.json.gz \
--page_ids_file ~/work/wikipedia-utils/20211129/page-ids-jawiki-20211129.json \
--index_name jawiki-20211129-para

$ python build_es_index_passages.py \
--passages_file ~/work/wikipedia-utils/20211129/passages-c400-jawiki-20211129.json.gz \
--page_ids_file ~/work/wikipedia-utils/20211129/page-ids-jawiki-20211129.json \
--index_name jawiki-20211129-c400

build_es_index_cirrussearch.py

This script builds an Elasticsearch index of Wikipedia pages using a Cirrussearch dump file. Cirrussearch dump files are originally for Elasticsearch bulk indexing, so this script simply takes the page information from the dump file to build an index.

$ python build_es_index_cirrussearch.py \
--cirrus_file ~/data/wikipedia/cirrussearch/20211129/jawiki-20211129-cirrussearch-content.json.gz \
--index_name jawiki-20211129-cirrus \
--language ja

License

The content of Wikipedia, which can be obtained with the codes in this repository, is licensed under the CC-BY-SA 3.0 and GFDL licenses.

The codes in this repository are licensed under the Apache License 2.0.

You might also like...
Sentence boundary disambiguation tool for Japanese texts (日本語文境界判定器)

Bunkai Bunkai is a sentence boundary (SB) disambiguation tool for Japanese texts. Quick Start $ pip install bunkai $ echo -e '宿を予約しました♪!まだ2ヶ月も先だけど。早すぎ

Lingtrain Aligner — ML powered library for the accurate texts alignment.
Lingtrain Aligner — ML powered library for the accurate texts alignment.

Lingtrain Aligner ML powered library for the accurate texts alignment in different languages. Purpose Main purpose of this alignment tool is to build

Augmenty is an augmentation library based on spaCy for augmenting texts.
Augmenty is an augmentation library based on spaCy for augmenting texts.

Augmenty: The cherry on top of your NLP pipeline Augmenty is an augmentation library based on spaCy for augmenting texts. Besides a wide array of high

Code for EMNLP'21 paper "Types of Out-of-Distribution Texts and How to Detect Them"

Code for EMNLP'21 paper "Types of Out-of-Distribution Texts and How to Detect Them"

Neural text generators like the GPT models promise a general-purpose means of manipulating texts.

Boolean Prompting for Neural Text Generators Neural text generators like the GPT models promise a general-purpose means of manipulating texts. These m

This library is testing the ethics of language models by using natural adversarial texts.
This library is testing the ethics of language models by using natural adversarial texts.

prompt2slip This library is testing the ethics of language models by using natural adversarial texts. This tool allows for short and simple code and v

Biterm Topic Model (BTM): modeling topics in short texts
Biterm Topic Model (BTM): modeling topics in short texts

Biterm Topic Model Bitermplus implements Biterm topic model for short texts introduced by Xiaohui Yan, Jiafeng Guo, Yanyan Lan, and Xueqi Cheng. Actua

This repository contains Python scripts for extracting linguistic features from Filipino texts.

Filipino Text Linguistic Feature Extractors This repository contains scripts for extracting linguistic features from Filipino texts. The scripts were

Text Classification in Turkish Texts with Bert
Text Classification in Turkish Texts with Bert

You can watch the details of the project on my youtube channel Project Interface Project Second Interface Goal= Correctly guessing the classification

Releases(2022-04-04)
Owner
Masatoshi Suzuki
Masatoshi Suzuki
A collection of GNN-based fake news detection models.

This repo includes the Pytorch-Geometric implementation of a series of Graph Neural Network (GNN) based fake news detection models. All GNN models are implemented and evaluated under the User Prefere

SafeGraph 251 Jan 01, 2023
KoBART model on huggingface transformers

KoBART-Transformers SKT에서 공개한 KoBART를 편리하게 사용할 수 있게 transformers로 포팅하였습니다. Install (Optional) BartModel과 PreTrainedTokenizerFast를 이용하면 설치하실 필요 없습니다. p

Hyunwoong Ko 58 Dec 07, 2022
An implementation of the Pay Attention when Required transformer

Pay Attention when Required (PAR) Transformer-XL An implementation of the Pay Attention when Required transformer from the paper: https://arxiv.org/pd

7 Aug 11, 2022
A curated list of FOSS tools to improve the Hacker News experience

Awesome-Hackernews Hacker News is a social news website focusing on computer technologies, hacking and startups. It promotes any content likely to "gr

Bryton Lacquement 141 Dec 27, 2022
Korean stereoypte detector with TUNiB-Electra and K-StereoSet

Korean Stereotype Detector Korean stereotype sentence classifier using K-StereoSet with TUNiB-Electra Web demo you can test this model easily in demo

Sae_Chan_Oh 11 Feb 18, 2022
PyABSA - Open & Efficient for Framework for Aspect-based Sentiment Analysis

PyABSA - Open & Efficient for Framework for Aspect-based Sentiment Analysis

YangHeng 567 Jan 07, 2023
A simple Flask site that allows users to create, update, and delete posts in a database, as well as perform basic NLP tasks on the posts.

A simple Flask site that allows users to create, update, and delete posts in a database, as well as perform basic NLP tasks on the posts.

Ian 1 Jan 15, 2022
A demo for end-to-end English and Chinese text spotting using ABCNet.

ABCNet_Chinese A demo for end-to-end English and Chinese text spotting using ABCNet. This is an old model that was trained a long ago, which serves as

Yuliang Liu 45 Oct 04, 2022
PIZZA - a task-oriented semantic parsing dataset

The PIZZA dataset continues the exploration of task-oriented parsing by introducing a new dataset for parsing pizza and drink orders, whose semantics cannot be captured by flat slots and intents.

17 Dec 14, 2022
Multilingual word vectors in 78 languages

Aligning the fastText vectors of 78 languages Facebook recently open-sourced word vectors in 89 languages. However these vectors are monolingual; mean

Babylon Health 1.2k Dec 17, 2022
In this project, we compared Spanish BERT and Multilingual BERT in the Sentiment Analysis task.

Applying BERT Fine Tuning to Sentiment Classification on Amazon Reviews Abstract Sentiment analysis has made great progress in recent years, due to th

Alexander Leonardo Lique Lamas 5 Jan 03, 2022
A Python 3.6+ package to run .many files, where many programs written in many languages may exist in one file.

RunMany Intro | Installation | VSCode Extension | Usage | Syntax | Settings | About A tool to run many programs written in many languages from one fil

6 May 22, 2022
Hierarchical unsupervised and semi-supervised topic models for sparse count data with CorEx

Anchored CorEx: Hierarchical Topic Modeling with Minimal Domain Knowledge Correlation Explanation (CorEx) is a topic model that yields rich topics tha

Greg Ver Steeg 592 Dec 18, 2022
Understanding the Difficulty of Training Transformers

Admin Understanding the Difficulty of Training Transformers Guided by our analyses, we propose Adaptive Model Initialization (Admin), which successful

Liyuan Liu 300 Dec 29, 2022
Problem: Given a nepali news find the category of the news

Classification of category of nepali news catorgory using different algorithms Problem: Multiclass Classification Approaches: TFIDF for vectorization

pudasainishushant 2 Jan 09, 2022
KoBERTopic은 BERTopic을 한국어 데이터에 적용할 수 있도록 토크나이저와 BERT를 수정한 코드입니다.

KoBERTopic 모델 소개 KoBERTopic은 BERTopic을 한국어 데이터에 적용할 수 있도록 토크나이저와 BERT를 수정했습니다. 기존 BERTopic : https://github.com/MaartenGr/BERTopic/tree/05a6790b21009d

Won Joon Yoo 26 Jan 03, 2023
Pretrained language model and its related optimization techniques developed by Huawei Noah's Ark Lab.

Pretrained Language Model This repository provides the latest pretrained language models and its related optimization techniques developed by Huawei N

HUAWEI Noah's Ark Lab 2.6k Jan 08, 2023
Code for the paper PermuteFormer

PermuteFormer This repo includes codes for the paper PermuteFormer: Efficient Relative Position Encoding for Long Sequences. Directory long_range_aren

Peng Chen 42 Mar 16, 2022
Incorporating KenLM language model with HuggingFace implementation of Wav2Vec2CTC Model using beam search decoding

Wav2Vec2CTC With KenLM Using KenLM ARPA language model with beam search to decode audio files and show the most probable transcription. Assuming you'v

farisalasmary 65 Sep 21, 2022
The Internet Archive Research Assistant - Daily search Internet Archive for new items matching your keywords

The Internet Archive Research Assistant - Daily search Internet Archive for new items matching your keywords

Kay Savetz 60 Dec 25, 2022