Natural language Understanding Toolkit

Related tags

Text Data & NLPnut
Overview

Natural language Understanding Toolkit

TOC

Requirements

To install nut you need:

  • Python 2.5 or 2.6
  • Numpy (>= 1.1)
  • Sparsesvd (>= 0.1.4) [1] (only CLSCL)

Installation

To clone the repository run,

git clone git://github.com/pprett/nut.git

To build the extension modules inplace run,

python setup.py build_ext --inplace

Add project to python path,

export PYTHONPATH=$PYTHONPATH:$HOME/workspace/nut

Documentation

CLSCL

An implementation of Cross-Language Structural Correspondence Learning (CLSCL). See [Prettenhofer2010] for a detailed description and [Prettenhofer2011] for more experiments and enhancements.

The data for cross-language sentiment classification that has been used in the above study can be found here [2].

clscl_train

Training script for CLSCL. See ./clscl_train --help for further details.

Usage:

$ ./clscl_train en de cls-acl10-processed/en/books/train.processed cls-acl10-processed/en/books/unlabeled.processed cls-acl10-processed/de/books/unlabeled.processed cls-acl10-processed/dict/en_de_dict.txt model.bz2 --phi 30 --max-unlabeled=50000 -k 100 -m 450 --strategy=parallel

|V_S| = 64682
|V_T| = 106024
|V| = 170706
|s_train| = 2000
|s_unlabeled| = 50000
|t_unlabeled| = 50000
debug: DictTranslator contains 5012 translations.
mutualinformation took 5.624 sec
select_pivots took 7.197 sec
|pivots| = 450
create_inverted_index took 59.353 sec
Run joblib.Parallel
[Parallel(n_jobs=-1)]: Done   1 out of 450 |elapsed:    9.1s remaining: 67.8min
[Parallel(n_jobs=-1)]: Done   5 out of 450 |elapsed:   15.2s remaining: 22.6min
[..]
[Parallel(n_jobs=-1)]: Done 449 out of 450 |elapsed: 14.5min remaining:    1.9s
train_aux_classifiers took 881.803 sec
density: 0.1154
Ut.shape = (100,170706)
learn took 903.588 sec
project took 175.483 sec

Note

If you have access to a hadoop cluster, you can use --strategy=hadoop to train the pivot classifiers even faster, however, make sure that the hadoop nodes have Bolt (feature-mask branch) [3] installed.

clscl_predict

Prediction script for CLSCL.

Usage:

$ ./clscl_predict cls-acl10-processed/en/books/train.processed model.bz2 cls-acl10-processed/de/books/test.processed 0.01
|V_S| = 64682
|V_T| = 106024
|V| = 170706
load took 0.681 sec
load took 0.659 sec
classes = {negative,positive}
project took 2.498 sec
project took 2.716 sec
project took 2.275 sec
project took 2.492 sec
ACC: 83.05

Named-Entity Recognition

A simple greedy left-to-right sequence labeling approach to named entity recognition (NER).

pre-trained models

We provide pre-trained named entity recognizers for place, person, and organization names in English and German. To tag a sentence simply use:

>>> from nut.io import compressed_load
>>> from nut.util import WordTokenizer

>>> tagger = compressed_load("model_demo_en.bz2")
>>> tokenizer = WordTokenizer()
>>> tokens = tokenizer.tokenize("Peter Prettenhofer lives in Austria .")

>>> # see tagger.tag.__doc__ for input format
>>> sent = [((token, "", ""), "") for token in tokens]
>>> g = tagger.tag(sent)  # returns a generator over tags
>>> print(" ".join(["/".join(tt) for tt in zip(tokens, g)]))
Peter/B-PER Prettenhofer/I-PER lives/O in/O Austria/B-LOC ./O

You can also use the convenience demo script ner_demo.py:

$ python ner_demo.py model_en_v1.bz2

The feature detector modules for the pre-trained models are en_best_v1.py and de_best_v1.py and can be found in the package nut.ner.features. In addition to baseline features (word presence, shape, pre-/suffixes) they use distributional features (brown clusters), non-local features (extended prediction history), and gazetteers (see [Ratinov2009]). The models have been trained on CoNLL03 [4]. Both models use neither syntactic features (e.g. part-of-speech tags, chunks) nor word lemmas, thus, minimizing the required pre-processing. Both models provide state-of-the-art performance on the CoNLL03 shared task benchmark for English [Ratinov2009]:

processed 46435 tokens with 4946 phrases; found: 4864 phrases; correct: 4455.
accuracy:  98.01%; precision:  91.59%; recall:  90.07%; FB1:  90.83
              LOC: precision:  91.69%; recall:  90.53%; FB1:  91.11  1648
              ORG: precision:  87.36%; recall:  85.73%; FB1:  86.54  1630
              PER: precision:  95.84%; recall:  94.06%; FB1:  94.94  1586

and German [Faruqui2010]:

processed 51943 tokens with 2845 phrases; found: 2438 phrases; correct: 2168.
accuracy:  97.92%; precision:  88.93%; recall:  76.20%; FB1:  82.07
              LOC: precision:  87.67%; recall:  79.83%; FB1:  83.57  957
              ORG: precision:  82.62%; recall:  65.92%; FB1:  73.33  466
              PER: precision:  93.00%; recall:  78.02%; FB1:  84.85  1015

To evaluate the German model on the out-domain data provided by [Faruqui2010] use the raw flag (-r) to write raw predictions (without B- and I- prefixes):

./ner_predict -r model_de_v1.bz2 clner/de/europarl/test.conll - | clner/scripts/conlleval -r
loading tagger... [done]
use_eph:  True
use_aso:  False
processed input in 40.9214s sec.
processed 110405 tokens with 2112 phrases; found: 2930 phrases; correct: 1676.
accuracy:  98.50%; precision:  57.20%; recall:  79.36%; FB1:  66.48
              LOC: precision:  91.47%; recall:  71.13%; FB1:  80.03  563
              ORG: precision:  43.63%; recall:  83.52%; FB1:  57.32  1673
              PER: precision:  62.10%; recall:  83.85%; FB1:  71.36  694

Note that the above results cannot be compared directly to the resuls of [Faruqui2010] since they use a slighly different setting (incl. MISC entity).

ner_train

Training script for NER. See ./ner_train --help for further details.

To train a conditional markov model with a greedy left-to-right decoder, the feature templates of [Rationov2009]_ and extended prediction history (see [Ratinov2009]) use:

./ner_train clner/en/conll03/train.iob2 model_rr09.bz2 -f rr09 -r 0.00001 -E 100 --shuffle --eph
________________________________________________________________________________
Feature extraction

min count:  1
use eph:  True
build_vocabulary took 24.662 sec
feature_extraction took 25.626 sec
creating training examples... build_examples took 42.998 sec
[done]
________________________________________________________________________________
Training

num examples: 203621
num features: 553249
num classes: 9
classes:  ['I-LOC', 'B-ORG', 'O', 'B-PER', 'I-PER', 'I-MISC', 'B-MISC', 'I-ORG', 'B-LOC']
reg: 0.00001000
epochs: 100
9 models trained in 239.28 seconds.
train took 282.374 sec

ner_predict

You can use the prediction script to tag new sentences formatted in CoNLL format and write the output to a file or to stdout. You can pipe the output directly to conlleval to assess the model performance:

./ner_predict model_rr09.bz2 clner/en/conll03/test.iob2 - | clner/scripts/conlleval
loading tagger... [done]
use_eph:  True
use_aso:  False
processed input in 11.2883s sec.
processed 46435 tokens with 5648 phrases; found: 5605 phrases; correct: 4799.
accuracy:  96.78%; precision:  85.62%; recall:  84.97%; FB1:  85.29
              LOC: precision:  87.29%; recall:  88.91%; FB1:  88.09  1699
             MISC: precision:  79.85%; recall:  75.64%; FB1:  77.69  665
              ORG: precision:  82.90%; recall:  78.81%; FB1:  80.80  1579
              PER: precision:  88.81%; recall:  91.28%; FB1:  90.03  1662

References

[1] http://pypi.python.org/pypi/sparsesvd/0.1.4
[2] http://www.webis.de/research/corpora/corpus-webis-cls-10/cls-acl10-processed.tar.gz
[3] https://github.com/pprett/bolt/tree/feature-mask
[4] For German we use the updated version of CoNLL03 by Sven Hartrumpf.
[Prettenhofer2010] Prettenhofer, P. and Stein, B., Cross-language text classification using structural correspondence learning. In Proceedings of ACL '10.
[Prettenhofer2011] Prettenhofer, P. and Stein, B., Cross-lingual adaptation using structural correspondence learning. ACM TIST (to appear). [preprint]
[Ratinov2009] (1, 2, 3) Ratinov, L. and Roth, D., Design challenges and misconceptions in named entity recognition. In Proceedings of CoNLL '09.
[Faruqui2010] (1, 2, 3) Faruqui, M. and Padรณ S., Training and Evaluating a German Named Entity Recognizer with Semantic Generalization. In Proceedings of KONVENS '10

Developer Notes

  • If you copy a new version of bolt into the externals directory make sure to run cython on the *.pyx files. If you fail to do so you will get a PickleError in multiprocessing.
Owner
Peter Prettenhofer
Peter Prettenhofer
Source code for CsiNet and CRNet using Fully Connected Layer-Shared feedback architecture.

FCS-applications Source code for CsiNet and CRNet using the Fully Connected Layer-Shared feedback architecture. Introduction This repository contains

Boyuan Zhang 4 Oct 07, 2022
Simple telegram bot to convert files into direct download link.you can use telegram as a file server ๐Ÿช

TGCLOUD ๐Ÿช Simple telegram bot to convert files into direct download link.you can use telegram as a file server ๐Ÿช Features Easy to Deploy Heroku Supp

Mr.Acid dev 6 Oct 18, 2022
Intent parsing and slot filling in PyTorch with seq2seq + attention

PyTorch Seq2Seq Intent Parsing Reframing intent parsing as a human - machine translation task. Work in progress successor to torch-seq2seq-intent-pars

Sean Robertson 159 Apr 04, 2022
Athena is an open-source implementation of end-to-end speech processing engine.

Athena is an open-source implementation of end-to-end speech processing engine. Our vision is to empower both industrial application and academic research on end-to-end models for speech processing.

Ke Technologies 34 Sep 08, 2022
๋‰ด์Šค ๋„๋ฉ”์ธ ์งˆ์˜์‘๋‹ต ์‹œ์Šคํ…œ (21-1ํ•™๊ธฐ ์กธ์—… ํ”„๋กœ์ ํŠธ)

๋‰ด์Šค ๋„๋ฉ”์ธ ์งˆ์˜์‘๋‹ต ์‹œ์Šคํ…œ ๋ณธ ํ”„๋กœ์ ํŠธ๋Š” ๋‰ด์Šค๊ธฐ์‚ฌ์— ๋Œ€ํ•œ ์งˆ์˜์‘๋‹ต ์„œ๋น„์Šค ๋ฅผ ์ œ๊ณตํ•˜๊ธฐ ์œ„ํ•ด์„œ ์ง„ํ–‰ํ•œ ํ”„๋กœ์ ํŠธ์ž…๋‹ˆ๋‹ค. ์•ฝ 3๊ฐœ์›”๊ฐ„ ( 21. 03 ~ 21. 05 ) ์ง„ํ–‰ํ•˜์˜€์œผ๋ฉฐ Transformer ์•„ํ‚คํ…์ณ ๊ธฐ๋ฐ˜์˜ Encoder๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ํ•œ๊ตญ์–ด ์งˆ์˜์‘๋‹ต ๋ฐ์ดํ„ฐ์…‹์œผ๋กœ

TaegyeongEo 4 Jul 08, 2022
This repository structures data in title, summary, tags, sentiment given a fragment of a conversation

Understand-conversation-AI This repository structures data in title, summary, tags, sentiment given a fragment of a conversation How to install: pip i

Juan Camilo Lรณpez Montes 1 Jan 11, 2022
Transformer related optimization, including BERT, GPT

This repository provides a script and recipe to run the highly optimized transformer-based encoder and decoder component, and it is tested and maintained by NVIDIA.

NVIDIA Corporation 1.7k Jan 04, 2023
ไธญๆ–‡็ฉบ้—ด่ฏญไน‰็†่งฃ่ฏ„ๆต‹

ไธญๆ–‡็ฉบ้—ด่ฏญไน‰็†่งฃ่ฏ„ๆต‹ ๆœ€ๆ–ฐๆถˆๆฏ 2021-04-10 ๐Ÿšฉ ๆŽ’่กŒๆฆœๅ‘ๅธƒ๏ผš Leaderboard 2021-04-05 ๅŸบ็บฟ็ณป็ปŸๅ‘ๅธƒ๏ผš SpaCE2021-Baseline 2021-04-05 ๅผ€ๆ”พๆ•ฐๆฎๆไบค๏ผš ๆไบค็ป“ๆžœ 2021-04-01 ๅผ€ๆ”พๆŠฅๅ๏ผš ๆˆ‘่ฆๆŠฅๅ 2021-04-01 ๆ•ฐๆฎ้›† pa

40 Jan 04, 2023
Super easy library for BERT based NLP models

Fast-Bert New - Learning Rate Finder for Text Classification Training (borrowed with thanks from https://github.com/davidtvs/pytorch-lr-finder) Suppor

Utterworks 1.8k Dec 27, 2022
Simple program that translates the name of files into English

Simple program that translates the name of files into English. Useful for when editing/inspecting programs that were developed in a foreign language.

0 Dec 22, 2021
Persian Bert For Long-Range Sequences

ParsBigBird: Persian Bert For Long-Range Sequences The Bert and ParsBert algorithms can handle texts with token lengths of up to 512, however, many ta

Sajjad Ayoubi 63 Dec 14, 2022
Develop open-source Python Arabic NLP libraries that the Arab world will easily use in all Natural Language Processing applications

Develop open-source Python Arabic NLP libraries that the Arab world will easily use in all Natural Language Processing applications

BADER ALABDAN 2 Oct 22, 2022
EdiTTS: Score-based Editing for Controllable Text-to-Speech

Official implementation of EdiTTS: Score-based Editing for Controllable Text-to-Speech

Neosapience 99 Jan 02, 2023
A Persian Image Captioning model based on Vision Encoder Decoder Models of the transformers๐Ÿค—.

Persian-Image-Captioning We fine-tuning the Vision Encoder Decoder Model for the task of image captioning on the coco-flickr-farsi dataset. The implem

Hamtech-ai 15 Aug 25, 2022
Deep Learning Topics with Computer Vision & NLP

Deep learning Udacity Course Deep Learning Topics with Computer Vision & NLP for the AWS Machine Learning Engineer Nanodegree Program Tasks are mostly

Simona Mircheva 1 Jan 20, 2022
๐Ÿ“œ GPT-2 Rhyming Limerick and Haiku models using data augmentation

Well-formed Limericks and Haikus with GPT2 ๐Ÿ“œ GPT-2 Rhyming Limerick and Haiku models using data augmentation In collaboration with Matthew Korahais &

Bardia Shahrestani 2 May 26, 2022
Generate text line images for training deep learning OCR model (e.g. CRNN)

Generate text line images for training deep learning OCR model (e.g. CRNN)

532 Jan 06, 2023
glow-speak is a fast, local, neural text to speech system that uses eSpeak-ng as a text/phoneme front-end.

Glow-Speak glow-speak is a fast, local, neural text to speech system that uses eSpeak-ng as a text/phoneme front-end. Installation git clone https://g

Rhasspy 8 Dec 25, 2022
Mysticbbs-rjam - rJAM splitscreen message reader for MysticBBS A46+

rJAM splitscreen message reader for MysticBBS A46+

Robbert Langezaal 4 Nov 22, 2022
NLP command-line assistant powered by OpenAI

NLP command-line assistant powered by OpenAI

Axel 16 Dec 09, 2022