Code for "Semantic Role Labeling as Dependency Parsing: Exploring Latent Tree Structures Inside Arguments".

Overview

crfsrl

image

Yu Zhang, Qingrong Xia, Shilin Zhou, Yong Jiang, Zhenghua Li, Guohong Fu, Min Zhang. Semantic Role Labeling as Dependency Parsing: Exploring Latent Tree Structures Inside Arguments. 2021. [arxiv]

Setup

The following packages should be installed:

Run the following scripts to obtain the training data. Please make sure PTB and OntoNotes are available:

bash scripts/conll05.sh PTB=<path-to-ptb>             SRL=data
bash scripts/conll12.sh ONTONOTES=<path-to-ontonotes> SRL=data

Run

Try the following commands to train first-order CRF and second-order CRF2o models:

# LSTM
# CRF
python -u crf.py   train -b -c configs/conll05.crf.srl.lstm.char-lemma.ini   -d 0 -f char lemma -p exp/conll05.crf.srl.lstm.char-lemma/model
# CRF2o
python -u crf2o.py train -b -c configs/conll05.crf2o.srl.lstm.char-lemma.ini -d 0 -f char lemma -p exp/conll05.crf2o.srl.lstm.char-lemma/model
# BERT finetuning
# CRF
python -u crf.py   train -b -c configs/conll05.crf.srl.bert.ini   -d 0 -p exp/conll05.crf.srl.bert/model   --batch-size=1000 --encoder bert --bert bert-large-cased 
# CRF2o
python -u crf2o.py train -b -c configs/conll05.crf2o.srl.bert.ini -d 0 -p exp/conll05.crf2o.srl.bert/model --batch-size=1000 --encoder bert --bert bert-large-cased

To do evaluation:

# end-to-end
python -u crf.py   evaluate -c configs/conll05.crf.srl.bert.ini  -d 0 -p exp/conll05.crf.srl.bert/model    --data data/conll05/test.conllu
# w/ gold predicates
python -u crf.py   evaluate -c configs/conll05.crf.srl.bert.ini  -d 0 -p exp/conll05.crf.srl.bert/model    --data data/conll05/test.conllu --prd

To make predictions:

python -u crf.py   predict  -c configs/conll05.crf.srl.bert.ini   -d 0 -p exp/conll05.crf.srl.bert/model   --data data/conll05/test.conllu --pred pred.conllu
bash scripts/eval.sh pred=pred.conllu gold=data/conll05/test.conllu

Contact

If you have any questions, feel free to contact me via emails.

Owner
Yu Zhang
PhD student @SUDA-LA; NLP/CL/ML.
Yu Zhang
Korean Simple Contrastive Learning of Sentence Embeddings using SKT KoBERT and kakaobrain KorNLU dataset

KoSimCSE Korean Simple Contrastive Learning of Sentence Embeddings implementation using pytorch SimCSE Installation git clone https://github.com/BM-K/

34 Nov 24, 2022
Mysticbbs-rjam - rJAM splitscreen message reader for MysticBBS A46+

rJAM splitscreen message reader for MysticBBS A46+

Robbert Langezaal 4 Nov 22, 2022
Sentello is python script that simulates the anti-evasion and anti-analysis techniques used by malware.

sentello Sentello is a python script that simulates the anti-evasion and anti-analysis techniques used by malware. For techniques that are difficult t

Malwation 62 Oct 02, 2022
A music comments dataset, containing 39,051 comments for 27,384 songs.

Music Comments Dataset A music comments dataset, containing 39,051 comments for 27,384 songs. For academic research use only. Introduction This datase

Zhang Yixiao 2 Jan 10, 2022
Implementation of the Hybrid Perception Block and Dual-Pruned Self-Attention block from the ITTR paper for Image to Image Translation using Transformers

ITTR - Pytorch Implementation of the Hybrid Perception Block (HPB) and Dual-Pruned Self-Attention (DPSA) block from the ITTR paper for Image to Image

Phil Wang 17 Dec 23, 2022
(ACL-IJCNLP 2021) Convolutions and Self-Attention: Re-interpreting Relative Positions in Pre-trained Language Models.

BERT Convolutions Code for the paper Convolutions and Self-Attention: Re-interpreting Relative Positions in Pre-trained Language Models. Contains expe

mlpc-ucsd 21 Jul 18, 2022
Random Directed Acyclic Graph Generator

DAG_Generator Random Directed Acyclic Graph Generator verison1.0 简介 工作流通常由DAG(有向无环图)来定义,其中每个计算任务$T_i$由一个顶点(node,task,vertex)表示。同时,任务之间的每个数据或控制依赖性由一条加权

Livion 17 Dec 27, 2022
An example project using OpenPrompt under pytorch-lightning for prompt-based SST2 sentiment analysis model

pl_prompt_sst An example project using OpenPrompt under the framework of pytorch-lightning for a training prompt-based text classification model on SS

Zhiling Zhang 5 Oct 21, 2022
DeLighT: Very Deep and Light-Weight Transformers

DeLighT: Very Deep and Light-weight Transformers This repository contains the source code of our work on building efficient sequence models: DeFINE (I

Sachin Mehta 440 Dec 18, 2022
Header-only C++ HNSW implementation with python bindings

Hnswlib - fast approximate nearest neighbor search Header-only C++ HNSW implementation with python bindings. NEWS: version 0.6 Thanks to (@dyashuni) h

2.3k Jan 05, 2023
XLNet: Generalized Autoregressive Pretraining for Language Understanding

Introduction XLNet is a new unsupervised language representation learning method based on a novel generalized permutation language modeling objective.

Zihang Dai 6k Jan 07, 2023
Creating an LSTM model to generate music

Music-Generation Creating an LSTM model to generate music music-generator Used to create basic sin wave sounds music-ai Contains the functions to conv

Jerin Joseph 2 Dec 02, 2021
An IVR Chatbot which can exponentially reduce the burden of companies as well as can improve the consumer/end user experience.

IVR-Chatbot Achievements 🏆 Team Uhtred won the Maverick 2.0 Bot-a-thon 2021 organized by AbInbev India. ❓ Problem Statement As we all know that, lot

ARYAMAAN PANDEY 9 Dec 08, 2022
Facebook AI Research Sequence-to-Sequence Toolkit written in Python.

Fairseq(-py) is a sequence modeling toolkit that allows researchers and developers to train custom models for translation, summarization, language mod

13.2k Jul 07, 2021
LightSpeech: Lightweight and Fast Text to Speech with Neural Architecture Search

LightSpeech UnOfficial PyTorch implementation of LightSpeech: Lightweight and Fast Text to Speech with Neural Architecture Search.

Rishikesh (ऋषिकेश) 54 Dec 03, 2022
Pytorch NLP library based on FastAI

Quick NLP Quick NLP is a deep learning nlp library inspired by the fast.ai library It follows the same api as fastai and extends it allowing for quick

Agis pof 283 Nov 21, 2022
The Classical Language Toolkit

Notice: This Git branch (dev) contains the CLTK's upcoming major release (v. 1.0.0). See https://github.com/cltk/cltk/tree/master and https://docs.clt

Classical Language Toolkit 754 Jan 09, 2023
Labelling platform for text using distant supervision

With DataQA, you can label unstructured text documents using rule-based distant supervision.

245 Aug 05, 2022
ProteinBERT is a universal protein language model pretrained on ~106M proteins from the UniRef90 dataset.

ProteinBERT is a universal protein language model pretrained on ~106M proteins from the UniRef90 dataset. Through its Python API, the pretrained model can be fine-tuned on any protein-related task in

241 Jan 04, 2023
STonKGs is a Sophisticated Transformer that can be jointly trained on biomedical text and knowledge graphs

STonKGs STonKGs is a Sophisticated Transformer that can be jointly trained on biomedical text and knowledge graphs. This multimodal Transformer combin

STonKGs 27 Aug 11, 2022