A library for finding knowledge neurons in pretrained transformer models.

Overview

knowledge-neurons

An open source repository replicating the 2021 paper Knowledge Neurons in Pretrained Transformers by Dai et al., and extending the technique to autoregressive models, as well as MLMs.

The Huggingface Transformers library is used as the backend, so any model you want to probe must be implemented there.

Currently integrated models:

BERT_MODELS = ["bert-base-uncased", "bert-base-multilingual-uncased"]
GPT2_MODELS = ["gpt2"]
GPT_NEO_MODELS = [
    "EleutherAI/gpt-neo-125M",
    "EleutherAI/gpt-neo-1.3B",
    "EleutherAI/gpt-neo-2.7B",
]

The technique from Dai et al. has been used to locate knowledge neurons in the huggingface bert-base-uncased model for all the head/relation/tail entities in the PARAREL dataset. Both the neurons, and more detailed results of the experiment are published at bert_base_uncased_neurons/*.json and can be replicated by running pararel_evaluate.py. More details in the Evaluations on the PARAREL dataset section.

Setup

Either clone the github, and run scripts from there:

git clone knowledge-neurons
cd knowledge-neurons

Or install as a pip package:

pip install knowledge-neurons

Usage & Examples

An example using bert-base-uncased:

from knowledge_neurons import KnowledgeNeurons, initialize_model_and_tokenizer, model_type
import random

# first initialize some hyperparameters
MODEL_NAME = "bert-base-uncased"

# to find the knowledge neurons, we need the same 'facts' expressed in multiple different ways, and a ground truth
TEXTS = [
    "Sarah was visiting [MASK], the capital of france",
    "The capital of france is [MASK]",
    "[MASK] is the capital of france",
    "France's capital [MASK] is a hotspot for romantic vacations",
    "The eiffel tower is situated in [MASK]",
    "[MASK] is the most populous city in france",
    "[MASK], france's capital, is one of the most popular tourist destinations in the world",
]
TEXT = TEXTS[0]
GROUND_TRUTH = "paris"

# these are some hyperparameters for the integrated gradients step
BATCH_SIZE = 20
STEPS = 20 # number of steps in the integrated grad calculation
ADAPTIVE_THRESHOLD = 0.3 # in the paper, they find the threshold value `t` by multiplying the max attribution score by some float - this is that float.
P = 0.5 # the threshold for the sharing percentage

# setup model & tokenizer
model, tokenizer = initialize_model_and_tokenizer(MODEL_NAME)

# initialize the knowledge neuron wrapper with your model, tokenizer and a string expressing the type of your model ('gpt2' / 'gpt_neo' / 'bert')
kn = KnowledgeNeurons(model, tokenizer, model_type=model_type(MODEL_NAME))

# use the integrated gradients technique to find some refined neurons for your set of prompts
refined_neurons = kn.get_refined_neurons(
    TEXTS,
    GROUND_TRUTH,
    p=P,
    batch_size=BATCH_SIZE,
    steps=STEPS,
    coarse_adaptive_threshold=ADAPTIVE_THRESHOLD,
)

# suppress the activations at the refined neurons + test the effect on a relevant prompt
# 'results_dict' is a dictionary containing the probability of the ground truth being generated before + after modification, as well as other info
# 'unpatch_fn' is a function you can use to undo the activation suppression in the model. 
# By default, the suppression is removed at the end of any function that applies a patch, but you can set 'undo_modification=False', 
# run your own experiments with the activations / weights still modified, then run 'unpatch_fn' to undo the modifications
results_dict, unpatch_fn = kn.suppress_knowledge(
    TEXT, GROUND_TRUTH, refined_neurons
)

# suppress the activations at the refined neurons + test the effect on an unrelated prompt
results_dict, unpatch_fn = kn.suppress_knowledge(
    "[MASK] is the official language of the solomon islands",
    "english",
    refined_neurons,
)

# enhance the activations at the refined neurons + test the effect on a relevant prompt
results_dict, unpatch_fn = kn.enhance_knowledge(TEXT, GROUND_TRUTH, refined_neurons)

# erase the weights of the output ff layer at the refined neurons (replacing them with zeros) + test the effect
results_dict, unpatch_fn = kn.erase_knowledge(
    TEXT, refined_neurons, target=GROUND_TRUTH, erase_value="zero"
)

# erase the weights of the output ff layer at the refined neurons (replacing them with an unk token) + test the effect
results_dict, unpatch_fn = kn.erase_knowledge(
    TEXT, refined_neurons, target=GROUND_TRUTH, erase_value="unk"
)

# edit the weights of the output ff layer at the refined neurons (replacing them with the word embedding of 'target') + test the effect
# we can make the model think the capital of france is London!
results_dict, unpatch_fn = kn.edit_knowledge(
    TEXT, target="london", neurons=refined_neurons
)

for bert models, the position where the "[MASK]" token is located is used to evaluate the knowledge neurons, (and the ground truth should be what the mask token is expected to be), but due to the nature of GPT models, the last position in the prompt is used by default, and the ground truth is expected to immediately follow.

In GPT models, due to the subword tokenization, the integrated gradients are taken n times, where n is the length of the expected ground truth in tokens, and the mean of the integrated gradients at each step is taken.

for bert models, the ground truth is currently expected to be a single token. Multi-token ground truths are on the todo list.

Evaluations on the PARAREL dataset

To ensure that the repo works correctly, figures 3 and 4 from the knowledge neurons paper are reproduced below. In general the results appear similar, except suppressing unrelated facts appears to have a little more of an affect in this repo than in the paper's original results.*

Below are Dai et al's, and our result, respectively, for suppressing the activations of the refined knowledge neurons in pararel: knowledge neuron suppression / dai et al. knowledge neuron suppression / ours

And Dai et al's, and our result, respectively, for enhancing the activations of the knowledge neurons: knowledge neuron enhancement / dai et al. knowledge neuron enhancement / ours

To find the knowledge neurons in bert-base-uncased for the PARAREL dataset, and replicate figures 3. and 4. from the paper, you can run

# find knowledge neurons + test suppression / enhancement (this will take a day or so on a decent gpu) 
# you can skip this step since the results are provided in `bert_base_uncased_neurons`
python -m torch.distributed.launch --nproc_per_node=NUM_GPUS_YOU_HAVE pararel_evaluate.py
# plot results 
python plot_pararel_results.py

*It's unclear where the difference comes from, but my suspicion is they made sure to only select facts with different relations, whereas in the plots below, only a different pararel UUID was selected. In retrospect, this could actually express the same fact, so I'll rerun these experiments soon.

TODO:

  • Better documentation
  • Publish PARAREL results for bert-base-multilingual-uncased
  • Publish PARAREL results for bert-large-uncased
  • Publish PARAREL results for bert-large-multilingual-uncased
  • Multiple masked tokens for bert models
  • Find good dataset for GPT-like models to evaluate knowledge neurons (PARAREL isn't applicable since the tail entities aren't always at the end of the sentence)
  • Add negative examples for getting refined neurons (i.e expressing a different fact in the same way)
  • Look into different attribution methods (cf. https://arxiv.org/pdf/2010.02695.pdf)

Citations

@article{Dai2021KnowledgeNI,
  title={Knowledge Neurons in Pretrained Transformers},
  author={Damai Dai and Li Dong and Y. Hao and Zhifang Sui and Furu Wei},
  journal={ArXiv},
  year={2021},
  volume={abs/2104.08696}
}
Owner
EleutherAI
EleutherAI
Official code for Spoken ObjectNet: A Bias-Controlled Spoken Caption Dataset

Official code for our Interspeech 2021 - Spoken ObjectNet: A Bias-Controlled Spoken Caption Dataset [1]*. Visually-grounded spoken language datasets c

Ian Palmer 3 Jan 26, 2022
The official implementation of "BERT is to NLP what AlexNet is to CV: Can Pre-Trained Language Models Identify Analogies?, ACL 2021 main conference"

BERT is to NLP what AlexNet is to CV This is the official implementation of BERT is to NLP what AlexNet is to CV: Can Pre-Trained Language Models Iden

Asahi Ushio 20 Nov 03, 2022
A tool helps build a talk preview image by combining the given background image and talk event description

talk-preview-img-builder A tool helps build a talk preview image by combining the given background image and talk event description Installation and U

PyCon Taiwan 4 Aug 20, 2022
(ACL 2022) The source code for the paper "Towards Abstractive Grounded Summarization of Podcast Transcripts"

Towards Abstractive Grounded Summarization of Podcast Transcripts We provide the source code for the paper "Towards Abstractive Grounded Summarization

10 Jul 01, 2022
An open collection of annotated voices in Japanese language

声庭 (Koniwa): オープンな日本語音声とアノテーションのコレクション Koniwa (声庭): An open collection of annotated voices in Japanese language 概要 Koniwa(声庭)は利用・修正・再配布が自由でオープンな音声とアノテ

Koniwa project 32 Dec 14, 2022
State-of-the-art NLP through transformer models in a modular design and consistent APIs.

Trapper (Transformers wRAPPER) Trapper is an NLP library that aims to make it easier to train transformer based models on downstream tasks. It wraps h

Open Business Software Solutions 42 Sep 21, 2022
neural network based speaker embedder

Content What is deepaudio-speaker? Installation Get Started Model Architecture How to contribute to deepaudio-speaker? Acknowledge What is deepaudio-s

20 Dec 29, 2022
Scikit-learn style model finetuning for NLP

Scikit-learn style model finetuning for NLP Finetune is a library that allows users to leverage state-of-the-art pretrained NLP models for a wide vari

indico 665 Dec 17, 2022
Syntax-aware Multi-spans Generation for Reading Comprehension (TASLP 2022)

SyntaxGen Syntax-aware Multi-spans Generation for Reading Comprehension (TASLP 2022) In this repo, we upload all the scripts for this work. Due to siz

Zhuosheng Zhang 3 Jun 13, 2022
Dual languaged (rus+eng) tool for packing and unpacking archives of Silky Engine.

SilkyArcTool English Dual languaged (rus+eng) GUI tool for packing and unpacking archives of Silky Engine. It is not the same arc as used in Ai6WIN. I

Tester 5 Sep 15, 2022
Code for text augmentation method leveraging large-scale language models

HyperMix Code for our paper GPT3Mix and conducting classification experiments using GPT-3 prompt-based data augmentation. Getting Started Installing P

NAVER AI 47 Dec 20, 2022
Text classification on IMDB dataset using Keras and Bi-LSTM network

Text classification on IMDB dataset using Keras and Bi-LSTM Text classification on IMDB dataset using Keras and Bi-LSTM network. Usage python3 main.py

Hamza Rashid 2 Sep 27, 2022
基于“Seq2Seq+前缀树”的知识图谱问答

KgCLUE-bert4keras 基于“Seq2Seq+前缀树”的知识图谱问答 简介 博客:https://kexue.fm/archives/8802 环境 软件:bert4keras=0.10.8 硬件:目前的结果是用一张Titan RTX(24G)跑出来的。 运行 第一次运行的时候,会给知

苏剑林(Jianlin Su) 65 Dec 12, 2022
ADCS - Automatic Defect Classification System (ADCS) for SSMC

Table of Contents Table of Contents ADCS Overview Summary Operator's Guide Demo System Design System Logic Training Mode Production System Flow Folder

Tam Zher Min 2 Jun 24, 2022
Quick insights from Zoom meeting transcripts using Graph + NLP

Transcript Analysis - Graph + NLP This program extracts insights from Zoom Meeting Transcripts (.vtt) using TigerGraph and NLTK. In order to run this

Advit Deepak 7 Sep 17, 2022
A library for Multilingual Unsupervised or Supervised word Embeddings

MUSE: Multilingual Unsupervised and Supervised Embeddings MUSE is a Python library for multilingual word embeddings, whose goal is to provide the comm

Facebook Research 3k Jan 06, 2023
Using BERT-based models for toxic span detection

SemEval 2021 Task 5: Toxic Spans Detection: Task: Link to SemEval-2021: Task 5 Toxic Span Detection is https://competitions.codalab.org/competitions/2

Ravika Nagpal 1 Jan 04, 2022
State of the Art Natural Language Processing

Spark NLP: State of the Art Natural Language Processing Spark NLP is a Natural Language Processing library built on top of Apache Spark ML. It provide

John Snow Labs 3k Jan 05, 2023
⚡ boost inference speed of T5 models by 5x & reduce the model size by 3x using fastT5.

Reduce T5 model size by 3X and increase the inference speed up to 5X. Install Usage Details Functionalities Benchmarks Onnx model Quantized onnx model

Kiran R 399 Jan 05, 2023
Machine Learning Course Project, IMDB movie review sentiment analysis by lstm, cnn, and transformer

IMDB Sentiment Analysis This is the final project of Machine Learning Courses in Huazhong University of Science and Technology, School of Artificial I

Daniel 0 Dec 27, 2021