9th place solution

Overview

AllDataAreExt-Galixir-Kaggle-HPA-2021-Solution

Team Members

  • Qishen Ha is Master of Engineering from the University of Tokyo. Machine Learning Engineer at LINE Corp. Kaggle Competition Grandmaster. Z by HP & NVIDIA Global Data Science Ambassador.

  • Bo Liu is currently a Senior Deep Learning Data Scientist at NVIDIA based in the U.S. and a Kaggle Competition Grandmaster.

  • Fuxu Liu is currently a Algorithm Engineer at ReadSense based in the China. Kaggle Competition Grandmaster. Z by HP & NVIDIA Global Data Science Ambassador.

  • Daishu is currently a Senior Research Scientist at Galixir. Kaggle Competition Grandmaster.

Methods

Overview of Methods

Image-to-cell augmentation module

We used two methods to train and make predictions in our pipeline.

Firstly, we use 512 x 512 image size to train and test. For predicting, we loop n times for each image (n is the number of cells in the image), leaving only one cell in each time and masking out the other cells to get single cell predictions.

The second method is trained with 768 x 786 images with random crop to 512 x 512 then tested almost the same way as our first approach. Specifically, we not only mask out the other cells but reposition of the cells in the left to the center of the image as well.

The two methods share the same training process, in which we incorporate two augmentation approach specifically designed for this task, in addition to regular augmentation methods such as random rotation, flipping, cropping, cutout and brightness adjusting. The first augmentation approach is, with a small probability, multiplying the data of the green channel (protein) by a random number in the range of [0.0,0.1] while setting the label to negative to improve the model's ability to recognize negative samples. The other augmentation approach is, with a small probability, setting the green channel to red (Microtubules) or yellow (Endoplasmicreticulum), multiplying it by a random number in the range of [0.6,1.0] and changing the label to the Microtubules or Endoplasmicreticulum.

pseudo-3D cell augmentation module

We pre-crop all the cells of each image and save them locally. Then during training, for each image we randomly select 16 cells. We then set bs=32, so for each batch we have 32x16=512 cells in total.

We resize each cell to 128x128, so the returned data shape from the dataloader is (32, 16, 4, 128, 128) . Next we reshape it into (512, 4, 128, 128) and then use a very common CNN to forward it, the output shape is (512, 19).

In the prediction phase we use the predicted average of different augmented images of a cell as the predicted value for each cell. But during the training process, we rereshape this (512, 19) prediction back into (32, 16, 19) . Then the loss is calculated for each cell with image-level GT label.

Featurziation with deep neural network

We use multipe CNN variants to train, such as EfficientNet, ResNet, DenseNet.

Classification

We average the different model predictions from different methods.

Tree-Structured Directory

├── input

│   ├──hpa-512: 512-image and 512-cell mask

│   │   ├── test

│   │   ├── test_cell_mask

│   │   ├── train

│   │   └── train_cell_mask

│   ├── hpa-seg : official segmentation models

│   └── hpa-single-cell-image-classification : official data and kaggle_2021.tsv

├── output : logs, models and submission

Code

  • S1_external_data_download.py: download external train data

  • S2_data_process.py: generate 512-image and 512-cell mask

  • S3_train_pipeline1.py: train image-to-cell augmentation module

  • S4.1_crop_cells.py: crop training cells for pseudo-3D cell augmentation module

  • S4.2_train_pipeline2.py: train pseudo-3D cell augmentation module

  • S5_predict.py: generate submission.csv

Owner
daishu
daishu
Discovering and Achieving Goals via World Models

Discovering and Achieving Goals via World Models [Project Website] [Benchmark Code] [Video (2min)] [Oral Talk (13min)] [Paper] Russell Mendonca*1, Ole

Oleg Rybkin 71 Dec 22, 2022
Few-Shot Graph Learning for Molecular Property Prediction

Few-shot Graph Learning for Molecular Property Prediction Introduction This is the source code and dataset for the following paper: Few-shot Graph Lea

Zhichun Guo 94 Dec 12, 2022
Generic template to bootstrap your PyTorch project with PyTorch Lightning, Hydra, W&B, and DVC.

NN Template Generic template to bootstrap your PyTorch project. Click on Use this Template and avoid writing boilerplate code for: PyTorch Lightning,

Luca Moschella 520 Dec 30, 2022
Official Implement of CVPR 2021 paper “Cross-Modal Collaborative Representation Learning and a Large-Scale RGBT Benchmark for Crowd Counting”

RGBT Crowd Counting Lingbo Liu, Jiaqi Chen, Hefeng Wu, Guanbin Li, Chenglong Li, Liang Lin. "Cross-Modal Collaborative Representation Learning and a L

37 Dec 08, 2022
Sound-guided Semantic Image Manipulation - Official Pytorch Code (CVPR 2022)

🔉 Sound-guided Semantic Image Manipulation (CVPR2022) Official Pytorch Implementation Sound-guided Semantic Image Manipulation IEEE/CVF Conference on

CVLAB 58 Dec 28, 2022
Implementation of CVPR 2021 paper "Spatially-invariant Style-codes Controlled Makeup Transfer"

SCGAN Implementation of CVPR 2021 paper "Spatially-invariant Style-codes Controlled Makeup Transfer" Prepare The pre-trained model is avaiable at http

118 Dec 12, 2022
GPT-Code-Clippy (GPT-CC) is an open source version of GitHub Copilot

GPT-Code-Clippy (GPT-CC) is an open source version of GitHub Copilot, a language model -- based on GPT-3, called GPT-Codex -- that is fine-tuned on publicly available code from GitHub.

2.3k Jan 09, 2023
Implementation of "A MLP-like Architecture for Dense Prediction"

A MLP-like Architecture for Dense Prediction (arXiv) Updates (22/07/2021) Initial release. Model Zoo We provide CycleMLP models pretrained on ImageNet

Shoufa Chen 244 Dec 27, 2022
This repository contains the code for the paper ``Identifiable VAEs via Sparse Decoding''.

Sparse VAE This repository contains the code for the paper ``Identifiable VAEs via Sparse Decoding''. Data Sources The datasets used in this paper wer

Gemma Moran 17 Dec 12, 2022
How the Deep Q-learning method works and discuss the new ideas that makes the algorithm work

Deep Q-Learning Recommend papers The first step is to read and understand the method that you will implement. It was first introduced in a 2013 paper

1 Jan 25, 2022
Official code for the ICCV 2021 paper "DECA: Deep viewpoint-Equivariant human pose estimation using Capsule Autoencoders"

DECA Official code for the ICCV 2021 paper "DECA: Deep viewpoint-Equivariant human pose estimation using Capsule Autoencoders". All the code is writte

23 Dec 01, 2022
AQP is a modular pipeline built to enable the comparison and testing of different quality metric configurations.

Audio Quality Platform - AQP An Open Modular Python Platform for Objective Speech and Audio Quality Metrics AQP is a highly modular pipeline designed

Jack Geraghty 24 Oct 01, 2022
Build Graph Nets in Tensorflow

Graph Nets library Graph Nets is DeepMind's library for building graph networks in Tensorflow and Sonnet. Contact DeepMind 5.2k Jan 05, 2023

SeqTR: A Simple yet Universal Network for Visual Grounding

SeqTR This is the official implementation of SeqTR: A Simple yet Universal Network for Visual Grounding, which simplifies and unifies the modelling fo

seanZhuh 76 Dec 24, 2022
PyTorch implementation of Constrained Policy Optimization

PyTorch implementation of Constrained Policy Optimization (CPO) This repository has a simple to understand and use implementation of CPO in PyTorch. A

Sapana Chaudhary 25 Dec 08, 2022
Evaluating AlexNet features at various depths

Linear Separability Evaluation This repo provides the scripts to test a learned AlexNet's feature representation performance at the five different con

Yuki M. Asano 32 Dec 30, 2022
Implementation of Deformable Attention in Pytorch from the paper "Vision Transformer with Deformable Attention"

Deformable Attention Implementation of Deformable Attention from this paper in Pytorch, which appears to be an improvement to what was proposed in DET

Phil Wang 128 Dec 24, 2022
Unofficial Implementation of MLP-Mixer in TensorFlow

mlp-mixer-tf Unofficial Implementation of MLP-Mixer [abs, pdf] in TensorFlow. Note: This project may have some bugs in it. I'm still learning how to i

Rishabh Anand 24 Mar 23, 2022
Official implementation of "DSP: Dual Soft-Paste for Unsupervised Domain Adaptive Semantic Segmentation"

DSP Official implementation of "DSP: Dual Soft-Paste for Unsupervised Domain Adaptive Semantic Segmentation". Accepted by ACM Multimedia 2021. Authors

20 Oct 24, 2022
Implementation of DocFormer: End-to-End Transformer for Document Understanding, a multi-modal transformer based architecture for the task of Visual Document Understanding (VDU)

DocFormer - PyTorch Implementation of DocFormer: End-to-End Transformer for Document Understanding, a multi-modal transformer based architecture for t

171 Jan 06, 2023