PyTorch DepthNet Training on Still Box dataset

Overview

DepthNet training on Still Box

Project page

This code can replicate the results of our paper that was published in UAVg-17. If you use this repo in your work, please cite us with the following bibtex :

@Article{isprs-annals-IV-2-W3-67-2017,
AUTHOR = {Pinard, C. and Chevalley, L. and Manzanera, A. and Filliat, D.},
TITLE = {END-TO-END DEPTH FROM MOTION WITH STABILIZED MONOCULAR VIDEOS},
JOURNAL = {ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences},
VOLUME = {IV-2/W3},
YEAR = {2017},
PAGES = {67--74},
URL = {https://www.isprs-ann-photogramm-remote-sens-spatial-inf-sci.net/IV-2-W3/67/2017/},
DOI = {10.5194/isprs-annals-IV-2-W3-67-2017}
}

depthnet

End-to-end depth from motion with stabilized monocular videos

  • This code shows how the only translational movement of the camera can be leveraged to compute a very precise depth map, even at more than 300 times the displacement.
  • Thus, for a camera movement of 30cm (nominal displacement used here), you can see as far as 100m.

See our second paper for information about using this code on real videos with speed estimation

Multi range Real-time depth inference from a monocular stabilized footage using a Fully Convolutional Neural Network

Click Below for video

youtube video

DepthNet

DepthNet is a network designed to infer Depth Map directly from a pair of stabilized image.

  • No information is given about movement direction
  • DepthNet is Fully Convolutional, which means it is completely robust to optical center fault
  • This network only works for pinhole-like pictures

Still Box

stillbox

Still box is a dataset created specifically for supervised training of depth map inference for stabilized aerial footage. It tries to mimic typical drone footages in static scenes, and depth is impossible to infer from a single image, as shapes get all kinds of sizes and positions.

  • You can download it here
  • The dataset webpage also provides a tutorial on how to read the data

Training

Requirements

[sudo] pip3 install -r requirements.txt

If you want to log some outputs from the validation set with the --log-output option, you need openCV python bindings to convert depth to RGB with a rainbow colormap.

If you don't have opencv, grayscales will be logged

Usage

Best results can be obtained by training on still box 64 and then finetuned successively up to the resolution you target. Here are the parameters used for the paper (please note how learning rate and batch size are changed, training was done a single GTX 980Ti).

python3 train.py -j8 --lr 0.01 /path/to/still_box/64/ --log-output --activation-function elu --bn
python3 train.py -j8 --lr 0.01 /path/to/still_box/128/ --log-output --activation-function elu --bn --pretrained /path/to/DepthNet64
python3 train.py -j8 --lr 0.001 /path/to/still_box/256/ --log-output --activation-function elu --bn -b64 --pretrained /path/to/DepthNet128
python3 train.py -j8 --lr 0.001 /path/to/still_box/512/ --log-output --activation-function elu --bn -b16 --pretrained /path/to/DepthNet256

Note: You can skip 128 and 256 training if you don't have time, results will be only slightly worse. However, you need to do 64 training first as stated by our first paper. This might has something to do with either the size of 64 dataset (in terms of scene numbers) or the fact that feature maps are reduced down to 1x1 making last convolution a FC equivalent operation

Pretrained networks

Best results were obtained with elu for depth activation (not mentionned in the original paper), along with BatchNorm.

Name training set Error (m)
DepthNet_elu_bn_64.pth.tar 64 4.65 Link
DepthNet_elu_bn_128.pth.tar 128 3.08 Link
DepthNet_elu_bn_256.pth.tar 256 2.29 Link
DepthNet_elu_bn_512.pth.tar 512 1.97 Link

All the networks have the same size and same structure.

Custom FOV and focal length

Every image in still box is 90° of FOV (field of view), focal length (in pixels) is then respectively

  • 32px for 64x64 images
  • 64px for 128x128 images
  • 128px for 128x128 images
  • 256px for 512x512 images

Training is not flexible to focal length, and for a custom focal length you will have to run a dedicated training.

If you need to use a custom focal length and FOV you can simply resize the pictures and crop them.

Say you have a picture of width w with an associated FOV fov. To get equivalent from one of the datasets you can first crop the still box pictures so that FOV will match fov (cropping doesn't affect focal length in pixels), and then resize it to w. Note that DepthNet can take rectangular pictures as input.

cropped_w = w/tan(pi*fov/360)

we naturally recommend to do this operation offline, metadata from metadata.json won't need to be altered.

with pretrained DepthNet

If you can resize your test pictures, thanks to its fully convolutional architecture, DepthNet is flexible to fov, as long as it stays below 90° (or max FOV encountered during training). Referring back to our witdh w and FOV fov we get with a network trained with a particular focal length f the following width to resize to:

resized_w = f/2*tan(pi*fov/360)

That way, you won't have to make a dedicated training or even download the still box dataset


/!\ These equations are only valid with pinhole equivalent cameras. Be sure to correct distortion before using DepthNet

Testing Inference

The run_inference.py lets you run an inference on a folder of images, and save the depth maps in different visualizations.

A simple still box scene of 512x512 pictures for testing can be downloaded here. Otherwise, any folder with a list of jpg images will do, provided you follow the guidelines above.

python3 run_inference.py --output-depth --no-resize --dataset-dir /path/to/stub_box --pretrained /path/to/DepthNet512 --frame-shift 3 --output-dir /path/to/save/outputs

Visualise training

Training can be visualized via tensorboard by launching this command in another terminal

tensorboard --logdir=/path/to/DepthNet/Results

You can then access the board from any computer in the local network by accessing machine_ip:6006 from a web browser, just as a regular tensorboard server. More info here

Owner
Clément Pinard
PhD ENSTA Paris, Deep Learning Engineer @ ContentSquare
Clément Pinard
Implementation of the paper ''Implicit Feature Refinement for Instance Segmentation''.

Implicit Feature Refinement for Instance Segmentation This repository is an official implementation of the ACM Multimedia 2021 paper Implicit Feature

Lufan Ma 17 Dec 28, 2022
Object Tracking and Detection Using OpenCV

Object tracking is one such application of computer vision where an object is detected in a video, otherwise interpreted as a set of frames, and the object’s trajectory is estimated. For instance, yo

Happy N. Monday 4 Aug 21, 2022
This is the latest version of the PULP SDK

PULP-SDK This is the latest version of the PULP SDK, which is under active development. The previous (now legacy) version, which is no longer supporte

78 Dec 07, 2022
Sub-tomogram-Detection - Deep learning based model for Cyro ET Sub-tomogram-Detection

Deep learning based model for Cyro ET Sub-tomogram-Detection High degree of stru

Siddhant Kumar 2 Feb 04, 2022
Covid-19 Test AI (Deep Learning - NNs) Software. Accuracy is the %96.5, loss is the 0.09 :)

Covid-19 Test AI (Deep Learning - NNs) Software I developed a segmentation algorithm to understand whether Covid-19 Test Photos are positive or negati

Emirhan BULUT 28 Dec 04, 2021
Uni-Fold: Training your own deep protein-folding models

Uni-Fold: Training your own deep protein-folding models. This package provides an implementation of a trainable, Transformer-based deep protein foldin

DP Technology 187 Jan 04, 2023
Voxel Set Transformer: A Set-to-Set Approach to 3D Object Detection from Point Clouds (CVPR 2022)

Voxel Set Transformer: A Set-to-Set Approach to 3D Object Detection from Point Clouds (CVPR2022)[paper] Authors: Chenhang He, Ruihuang Li, Shuai Li, L

Billy HE 141 Dec 30, 2022
Official implementation of our paper "LLA: Loss-aware Label Assignment for Dense Pedestrian Detection" in Pytorch.

LLA: Loss-aware Label Assignment for Dense Pedestrian Detection This project provides an implementation for "LLA: Loss-aware Label Assignment for Dens

35 Dec 06, 2022
Unsupervised Feature Loss (UFLoss) for High Fidelity Deep learning (DL)-based reconstruction

Unsupervised Feature Loss (UFLoss) for High Fidelity Deep learning (DL)-based reconstruction Official github repository for the paper High Fidelity De

28 Dec 16, 2022
Example scripts for the detection of lanes using the ultra fast lane detection model in ONNX.

Example scripts for the detection of lanes using the ultra fast lane detection model in ONNX.

Ibai Gorordo 35 Sep 07, 2022
Official implementation of "Articulation Aware Canonical Surface Mapping"

Articulation-Aware Canonical Surface Mapping Nilesh Kulkarni, Abhinav Gupta, David F. Fouhey, Shubham Tulsiani Paper Project Page Requirements Python

Nilesh Kulkarni 56 Dec 16, 2022
Robust Consistent Video Depth Estimation

[CVPR 2021] Robust Consistent Video Depth Estimation This repository contains Python and C++ implementation of Robust Consistent Video Depth, as descr

Facebook Research 213 Dec 17, 2022
use machine learning to recognize gesture on raspberrypi

Raspberrypi_Gesture-Recognition use machine learning to recognize gesture on raspberrypi 說明 利用 tensorflow lite 訓練手部辨識模型 分辨 "剪刀"、"石頭"、"布" 之手勢 再將訓練模型匯入

1 Dec 10, 2021
Benchmark VAE - Library for Variational Autoencoder benchmarking

Documentation pythae This library implements some of the most common (Variational) Autoencoder models. In particular it provides the possibility to pe

1.1k Jan 02, 2023
Understanding Convolution for Semantic Segmentation

TuSimple-DUC by Panqu Wang, Pengfei Chen, Ye Yuan, Ding Liu, Zehua Huang, Xiaodi Hou, and Garrison Cottrell. Introduction This repository is for Under

TuSimple 585 Dec 31, 2022
i-SpaSP: Structured Neural Pruning via Sparse Signal Recovery

i-SpaSP: Structured Neural Pruning via Sparse Signal Recovery This is a public code repository for the publication: i-SpaSP: Structured Neural Pruning

Cameron Ronald Wolfe 5 Nov 04, 2022
Unofficial Alias-Free GAN implementation. Based on rosinality's version with expanded training and inference options.

Alias-Free GAN An unofficial version of Alias-Free Generative Adversarial Networks (https://arxiv.org/abs/2106.12423). This repository was heavily bas

dusk (they/them) 75 Dec 12, 2022
PyTorch code for the "Deep Neural Networks with Box Convolutions" paper

Box Convolution Layer for ConvNets Single-box-conv network (from `examples/mnist.py`) learns patterns on MNIST What This Is This is a PyTorch implemen

Egor Burkov 515 Dec 18, 2022
Code related to the manuscript "Averting A Crisis In Simulation-Based Inference"

Abstract We present extensive empirical evidence showing that current Bayesian simulation-based inference algorithms are inadequate for the falsificat

Montefiore Artificial Intelligence Research 3 Nov 14, 2022
HSC4D: Human-centered 4D Scene Capture in Large-scale Indoor-outdoor Space Using Wearable IMUs and LiDAR. CVPR 2022

HSC4D: Human-centered 4D Scene Capture in Large-scale Indoor-outdoor Space Using Wearable IMUs and LiDAR. CVPR 2022 [Project page | Video] Getting sta

51 Nov 29, 2022